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Belief Functions

B The standard text for definitions, etc. Is,
of course:

Shafer, G. 1976.
“A Mathematical Theory of Evidence”
Princeton University Press




Belief Functions

A belief function on a frame Q Is a
function Bel: 2° ® [0, 1] such that:
1 Be(/A)=0
2 Bed(Q)=1
3 Bd(AE..EA)S3
a Bel(A)- A BA(AGA)+..+(-)"™Bel(AC..CA)

I<]

Plausibility is defined by PI(A) =1- Bel(~ A)




Belief Functions

Basic probability assignments are

functions m: 2°® [0, 1] such that:
1 m(A =0
2 g m(A =1

Al Q

Then we may define Bel(A) = § m(B)

Bl A




Belief Functions

m Example:

3 Consider a frame with three possible
outcomes {a,b,c}

3 Suppose we are given the following basic
probability assignment:

n({a) = xm({t}) = Lm({g) =
m({ab})=1m({ac})=.2m({bc)=23;

m({ab,c})=.1

T T
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Belief Functions

Bpa Bel

{a} 1
{b} 1
{c} |
{ab} A
{ac} 2
{b,c} 3
{ab,c} 1
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Belief Functions

Bpa Bel
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Belief Functions

m Bpas may be recovered from Bel
functions using

m(A)=3 (-1)"" Bel(B)

Bi A




Belief Functions

m The commonality function is a function
Q: 2°® [0, 1]
defined by Q(A) = § m(B)

Al B

m Bpas may be recovered from
commonality functions using

m(A)=4 (-1)° " Q(B)

Al B




Belief Functions

Bpa Bel
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Belief Functions

m Recall that the bpa function can be uniquely
recovered from PI, Bel or Q

m In fact, we can convert any one of the four
representations uniquely into any of the
others

B These conversions are examples of MObius
transforms

B There are Fast MoObius Transforms to do this

efficiently (see Kennes paper)
I TTI—————————————————————————————————————_
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Belief Functions

m In expert systems based on belief
functions:
s user inputs are often in the form of bpas

3 propagation is most efficient implemented
via commonalities

s marginalization is most efficient
Implemented via Bel functions

s output Is often desired as Bel or PI

functions
—13



Combining Belief Functions

m Dempster’'s Rule

3 Consider two belief functions given by their
bpas as follows:

m,({a})=5m,({~a})=3m({a~a})=2
m,({a})=.7m ({~a})=.2m, ({a~a)=.1



Combining Belief Functions

M
{a} {~a} {a,~a}
0.5 0.3 0.2
{a} 0.7{ 0.7x0.5=0.35 0.7x0.3=0.21 0.7x0.2=0.14
{a} - {a}
me {~a} 0.2f 0.2x0.5=0.10 0.2x0.3=0.06 0.2x0.2=0.04
- {~a} {~a}
{a,~a} 0.1] 0.1x0.5=0.05 0.1x0.3=0.03 0.1x0.2=0.02
{a} {~a} {a,~a}
. 0.35+0.14+0.05
mAm,({a})= =05 = 0,783
1- (0.21+0.10) mAm, ({a-a)=——22___ 00

) 0.06+0.04 +0.03 1- (0.21+0.10)
mAm, ({~a}) =7 (021+010) o0 1%

I ——




m Note, however, the following:
m, Q, m, Q, QxQ, m

{a} 5 7 7 8 56 54
{~a) 3 5 2 3 15 13
fa~a} 2 2 1 1 .02 02

After normalization, these are the same values as
derived from Dempster’s Rule

I ——



Combining Belief Functions

m In expert system applications, therefore,
it Is efficient to:

% use Fast MObius Transforms to convert
bpas to commonalities

3 combine the commonalities by pointwise
multiplication

s (eventually) use Fast Mobius Transforms
to convert the results back to bpas or other
desired outputs

I ——



Types of Belief Functions

m If Ais a subset of the frame Q of a belief
function, then A is a focal element if m(A) >0

m The core of a belief function is the union of all
Its focal elements

m If, for some subset A, m(A) =s and
M(Q) =1- sthen mis a simple support
function

B Thus a simple support function has only one
focal element other than the frame itself

I ——



Types of Belief Functions

m A belief function that is the combination of
one or more simple support functions is
called a separable support function

m A belief function that results from
marginalizing a separable support function
may not itself be separable; it is called a
support function; Shafer suggests these are
fundamental for the representation of
evidence

I ——



Types of Belief Functions

m Simple support functions
Separabl\é support functions
Support fl\lmctions
Belief funlctions

m A belief function whose focal elements are
nested Is called a consonant belief function

I ——



m A belief function that is not a support function is
called a quasi support function

m Quasi support functions arise as the limits of
sequences of support functions

m A belief function for which Bel (AE B) =Be (A) +Bel(B)
whenever AC B =/ is called a Bayesian belief
function

m Equivalently, a Bayesian belief function is a belief
function all of whose focal elements are singletons

m Bayesian belief functions are quasi support functions

(except when Bél ({q}):1for some gl Q)



m Belief functions can be propagated locally in Join
Trees (Markov Trees) using the Shenoy-Shafer
algorithm

m Belief functions can also be propagated locally in
Junction Trees using the Aalborg architecture; this
requires division (of commonalities) and intermediate
results may not be interpretable

B In practice, it is most efficient to perform combination
using commonalites and marginalization using Bels

I ——



Belief Functions in Expert Systems

m Xu and Kennes give efficient algorithms for carrying
out belief function combination, for bit-array
representations of subsets, and for Fast Mobius
Transforms

B The bit-array representation includes algorithms for
testing subsets, forming intersections, unions, etc
directly with the bit-arrays

m Full detalls of the Fast M6bius Transform algorithms
are given in Kennes

I ——



m Efficient implementations are especially important for
belief functions

# N binary variables generate a joint space with 2"
configurations in probabllity systems

#% N binary variables generate a joint space with 2%
potential focal elements in belief function systems



m “AND” nodes can be defined In belief
function terms

3 Suppose we wanted to create a relationship
showing that a variable A is true iff variables B
and C are both true

# In a Bayesian network, we could use:




m “AND” nodes can be defined In belief

function terms

3 Suppose we wanted to create a relationship
showing that a variable A is true iff variables B
and C are both true

% What would we use for belief functions?



m “AND” nodes can be defined In belief

function terms

3 Suppose we wanted to create a relationship
showing that a variable A is true iff variables B
and C are both true

% What would we use for belief functions?

d(abo).(~ab~c).(~a~bd).(~a~b-}



Belief Functions in Expert Systems

m Discounted “AND” nodes can also be
defined

3 Suppose we want A to be certain if B and
C are both certain, but B and C both to be
true with probability 0.95 when A is certain

é a,b,c
é
& a,b~c
€ a~Db,c
é
ga,~b~c |0
€ ~abc
é
g~ab-~c
é
s ~a,~b,c
é
& a,~Db,~cl0.
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I Discounted “AND” nodes can also be
defined

# Suppose we want A to be certain if B and
C are both certain, but B and C both to be
true with bpa 0.95 when A Is certain

¢  {(abc),(~ab,~c),(~a~bc),(~a~b~c) 0_953
a,b,c),(a,~b,~c),(~a,b,~c),(~a,~b,c),(~a,~b,~c); 0. 5@
d(ab.c).(a~b,~c) (~ab~c).(~a~bc),( }oo



Belief Functions in Expert Systems

m Shafer & Srivastava show how to apply
mean-per-unit sampling using belief
functions

m Gillett & Srivastava show how to
perform attribute sampling using belief
functions

m Gillett shows how to apply monetary
unit sampling using belief functions

30
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Belief Functions in Expert Systems

m Elicitation of bpas from domain experts is
potentially more difficult even than for
orobabillities, partly because of unfamiliarity,
out more importantly because far more
parameters need to be obtained

m Eliciting expert beliefs in a sufficiently general
way that they can be interpreted as either
probabilities or bpas for comparative studies
IS even trickier!

I ——




Belief Functions in Expert Systems

m One possibility
3 Elicit two parameters

¢ The ratio f estimating how much more support
the evidence provides for the objective than
against it

+ The degree of indeterminacy | estimating the
extent to which the evidence fails to provide
persuasive evidence for or against the
objective

I ——



m One possibility
# For probabilities
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m One possibility
s For belief functions
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Belief Functions in Expert Systems

m As In the case of probabillities, joint
valuations cannot be uniquely
determined from marginals (which is
often all domain experts provide)

m Depending on the application, however,
“best” or “worst” cases can sometimes
be identified

I ——



Belief Functions in Expert Systems

m The Shafer & Srivastava paper we read for today sets out
extensive arguments why belief functions might be considered
superior to probabilities for certain applications, such as auditing

B Among these reasons, the one that first attracted me to study
belief functions when | was building an Expert System is the
argument that they better represent ignorance

m In auditing, for example, accounts receivable, insufficient replies
from customers might lead us to assess a probability of, say,
only 70% that accounts receivable exist

m Probability theory then forces us to assess a 30% probability
that they do not exist, despite the fact that there is no evidence
they do not - merely insufficient evidence that they do

I ——



Belief Functions in Expert Systems

m Belief functions allow us to assign a 70% bpa to existence, and
the balance to the whole frame, representing ignorance

m In probability theory there would be no difference if some of the
missing customers in fact wrote to deny the existence of the
balance

m Using belief functions, however, we could assign some part of
the bpa to represent contrary evidence, and the remainder to
ignorance - perhaps m(exist) =0.7;m(~ exist) = 0.2;m(exist, ~ exist) =0.1

m Of course, in belief function terms, complete ignorance is
represented by m(exist,~ exist) =1: it must be one of the
outcomes, we don’t know which, or which is more likely

m Probabilistically, ignorance is represented as P(exist) =P~ (exist) =0.5

and we have to assume the outcomes equally likely
T 27



