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Belief Functions

n The standard text for definitions, etc. is,
of course:

Shafer, G. 1976.
“A Mathematical Theory of Evidence”
Princeton University Press
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Belief Functions

A belief function on a frame     is a
function                          such that:
1
2
3
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Belief Functions

Basic probability assignments are
functions                         such that:
1
2

Then we may define

m :  2 [0,  1]Θ →
m( ) 0∅ =

m( ) 1
A
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Belief Functions

n Example:
k Consider a frame with three possible

outcomes
k Suppose we are given the following basic

probability assignment:

{ }, ,a b c
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Belief Functions

Bpa Bel
∅ 0 0
{a} .1 .1

{b} .1 .1

{c} .1 .1

{a,b} .1 .3

{a,c} .2 .4

{b,c} .3 .5

{a,b,c} .1 1
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Belief Functions

Bpa Bel Pl
∅ 0 0 0
{a} .1 .1 .5

{b} .1 .1 .6

{c} .1 .1 .7

{a,b} .1 .3 .9

{a,c} .2 .4 .9

{b,c} .3 .5 .9

{a,b,c} .1 1 1
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Belief Functions

n Bpas may be recovered from Bel
functions using

( ) ( ) ( )m 1 Bel
A B

B A

A B
−

⊆

= −∑
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Belief Functions

n The commonality function is a function

defined by

n Bpas may be recovered from
commonality functions using

Q :  2 [0,  1]Θ →
Q( ) m( )

A B

A B
⊆

= ∑

( ) ( ) ( )m 1 Q
B A

A B

A B
−

⊆

= −∑
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Belief Functions

Bpa Bel Pl      Q
∅ 0 0 0         1
{a} .1 .1 .5         .5

{b} .1 .1 .6         .6

{c} .1 .1 .7         .7

{a,b} .1 .3 .9         .2

{a,c} .2 .4 .9         .3

{b,c} .3 .5 .9         .4

{a,b,c} .1 1 1         .1



11

Belief Functions

n Recall that the bpa function can be uniquely
recovered from Pl, Bel or Q

n In fact, we can convert any one of the four
representations uniquely into any of the
others

n These conversions are examples of Möbius
transforms

n There are Fast Möbius Transforms to do this
efficiently (see Kennes paper)
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Belief Functions

bpa Bel

Q Pl
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Belief Functions

n In expert systems based on belief
functions:
k user inputs are often in the form of bpas
k propagation is most efficient implemented

via commonalities
k marginalization is most efficient

implemented via Bel functions
k output is often desired as Bel or Pl

functions
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Combining Belief Functions

n Dempster’s Rule
k Consider two belief functions given by their

bpas as follows:

{ }( ) { }( ) { }( )
{ }( ) { }( ) { }( )

1 1 1

2 1 1

m .5;m ~ .3;m ,~ .2;

m .7;m ~ .2;m ,~ .1

a a a a

a a a a

= = =

= = =
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Combining Belief Functions
m1

{a } {~a } {a ,~a }
0.5 0.3 0.2

{a } 0.7 0.7x0.5=0.35 0.7x0.3=0.21 0.7x0.2=0.14
{a } - {a }

m2 {~a } 0.2 0.2x0.5=0.10 0.2x0.3=0.06 0.2x0.2=0.04
- {~a } {~a }

{a ,~a } 0.1 0.1x0.5=0.05 0.1x0.3=0.03 0.1x0.2=0.02
{a } {~a } {a ,~a }

{ }( ) ( )
0.54

1 2 0.69

0.35 0.14 0.05
m m 0.783

1 0.21 0.10
a

+ +⊗ = = =
− +

{ }( ) ( )
0.13

1 2 0.69

0.06 0.04 0.03
m m ~ 0.188

1 0.21 0.10
a

+ +⊗ = = =
− +

{ }( ) ( )1 2

0.02
m m ,~ 0.029

1 0.21 0.10
a a⊗ = =

− +
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Combining Belief Functions

n Note, however, the following:
m1 Q1 m2 Q2 Q1xQ2        m

{a} .5 .7 .7 .8 .56      .54
{~a} .3 .5 .2 .3 .15      .13
{a,~a} .2 .2 .1 .1 .02      .02

After normalization, these are the same values as
derived from Dempster’s Rule
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Combining Belief Functions
n In expert system applications, therefore,

it is efficient to:
k use Fast Möbius Transforms to convert

bpas to commonalities
k combine the commonalities by pointwise

multiplication
k (eventually) use Fast Möbius Transforms

to convert the results back to bpas or other
desired outputs
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Types of Belief Functions

n If A is a subset of the frame     of a belief
function, then A is a focal element if

n The core of a belief function is the union of all
its focal elements

n If, for some subset A,               and
                   then m is a simple support
function

n Thus a simple support function has only one
focal element other than the frame itself

Θ
m( ) 0A >

m( )A s=
m( ) 1 sΘ = −
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Types of Belief Functions

n A belief function that is the combination of
one or more simple support functions is
called a separable support function

n A belief function that results from
marginalizing a separable support function
may not itself be separable; it is called a
support function; Shafer suggests these are
fundamental for the representation of
evidence
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Types of Belief Functions

n Simple support functions
⊂

Separable support functions
⊂

Support functions
⊂

Belief functions
n A belief function whose focal elements are

nested is called a consonant belief function
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Types of Belief Functions
n A belief function that is not a support function is

called a quasi support function
n Quasi support functions arise as the limits of

sequences of support functions
n A belief function for which

whenever                  is called a Bayesian belief
function

n Equivalently, a Bayesian belief function is a belief
function all of whose focal elements are singletons

n Bayesian belief functions are quasi support functions
(except when                    for some          )

( ) ( ) ( )Bel Bel BelA B A B∪ = +
A B∩ = ∅

{ }( )Bel 1θ = θ ∈ Θ
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Belief Functions in Expert Systems

n Belief functions can be propagated locally in Join
Trees (Markov Trees) using the Shenoy-Shafer
algorithm

n Belief functions can also be propagated locally in
Junction Trees using the Aalborg architecture; this
requires division (of commonalities) and intermediate
results may not be interpretable

n In practice, it is most efficient to perform combination
using commonalites and marginalization using Bels
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Belief Functions in Expert Systems

n Xu and Kennes give efficient algorithms for carrying
out belief function combination, for bit-array
representations of subsets, and for Fast Möbius
Transforms

n The bit-array representation includes algorithms for
testing subsets, forming intersections, unions, etc
directly with the bit-arrays

n Full details of the Fast Möbius Transform algorithms
are given in Kennes
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Belief Functions in Expert Systems

n Efficient implementations are especially important for
belief functions

k n binary variables generate a joint space with
configurations in probability systems

k n binary variables generate a joint space with
potential focal elements in belief function systems

2n

22
n
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Belief Functions in Expert Systems

n “AND” nodes can be defined in belief
function terms
k Suppose we wanted to create a relationship

showing that a variable A is true iff variables B
and C are both true

k In a Bayesian network, we could use: , , 1

, , ~ 0
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Belief Functions in Expert Systems

n “AND” nodes can be defined in belief
function terms
k Suppose we wanted to create a relationship

showing that a variable A is true iff variables B
and C are both true

k What would we use for belief functions?
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Belief Functions in Expert Systems

n “AND” nodes can be defined in belief
function terms
k Suppose we wanted to create a relationship

showing that a variable A is true iff variables B
and C are both true

k What would we use for belief functions?

( ) ( ) ( ) ( ){ }, , , ~ , ,~ , ~ ,~ , , ~ ,~ ,~ 1a b c a b c a b c a b c  
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Belief Functions in Expert Systems

n Discounted “AND” nodes can also be
defined
k Suppose we want A to be certain if B and

C are both certain, but B and C both to be
true with probability 0.95 when A is certain

, , 1

, , ~ 0

,~ , 0

,~ ,~ 0.0526

~ , , 0

~ , ,~ 1

~ ,~ , 1

~ ,~ ,~ 0.9474
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Belief Functions in Expert Systems

n Discounted “AND” nodes can also be
defined
k Suppose we want A to be certain if B and

C are both certain, but B and C both to be
true with bpa 0.95 when A is certain

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ){ }

, , , ~ , ,~ , ~ ,~ , , ~ ,~ ,~ 0.95

0.05, , , ,~ ,~ , ~ , ,~ , ~ ,~ , , ~ ,~ ,~

a b c a b c a b c a b c

a b c a b c a b c a b c a b c

 
 
  
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Belief Functions in Expert Systems

n Shafer & Srivastava show how to apply
mean-per-unit sampling using belief
functions

n Gillett & Srivastava show how to
perform attribute sampling using belief
functions

n Gillett shows how to apply monetary
unit sampling using belief functions
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Belief Functions in Expert Systems

n Elicitation of bpas from domain experts is
potentially more difficult even than for
probabilities, partly because of unfamiliarity,
but more importantly because far more
parameters need to be obtained

n Eliciting expert beliefs in a sufficiently general
way that they can be interpreted as either
probabilities or bpas for comparative studies
is even trickier!
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Belief Functions in Expert Systems

n One possibility
k Elicit two parameters

u The ratio f estimating how much more support
the evidence provides for the objective than
against it

u The degree of indeterminacy i estimating the
extent to which the evidence fails to provide
persuasive evidence for or against the
objective
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Belief Functions in Expert Systems

n One possibility
k For probabilities
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Belief Functions in Expert Systems

n One possibility
k For belief functions
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Belief Functions in Expert Systems

n As in the case of probabilities, joint
valuations cannot be uniquely
determined from marginals (which is
often all domain experts provide)

n Depending on the application, however,
“best” or “worst” cases can sometimes
be identified
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Belief Functions in Expert Systems

n The Shafer & Srivastava paper we read for today sets out
extensive arguments why belief functions might be considered
superior to probabilities for certain applications, such as auditing

n Among these reasons, the one that first attracted me to study
belief functions when I was building an Expert System is the
argument that they better represent ignorance

n In auditing, for example, accounts receivable, insufficient replies
from customers might lead us to assess a probability of, say,
only 70% that accounts receivable exist

n Probability theory then forces us to assess a 30% probability
that they do not exist, despite the fact that there is no evidence
they do not - merely insufficient evidence that they do
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Belief Functions in Expert Systems

n Belief functions allow us to assign a 70% bpa to existence, and
the balance to the whole frame, representing ignorance

n In probability theory there would be no difference if some of the
missing customers in fact wrote to deny the existence of the
balance

n Using belief functions, however, we could assign some part of
the bpa to represent contrary evidence, and the remainder to
ignorance - perhaps

n Of course, in belief function terms, complete ignorance is
represented by                           : it must be one of the
outcomes, we don’t know which, or which is more likely

n Probabilistically, ignorance is represented as
and we have to assume the outcomes equally likely

( ) ( ) ( )m 0.7;m ~ 0.2;m ,~ 0.1exist exist exist exist= = =

( )m ,~ 1exist exist =

( ) ( )P P ~ 0.5exist exist= =


