26:198:722 Expert Systems

- Dempster-Shafer Belief Functions
- Combining Belief Functions
- Types of Belief Functions
- Belief Functions in Expert Systems

■ The standard text for definitions, etc. is, of course:

Shafer, G. 1976.

"A Mathematical Theory of Evidence"
Princeton University Press

A belief function on a frame Θ is a

function Bel: $2^{\Theta} \rightarrow [0, 1]$ such that:

- $1 \quad \operatorname{Bel}(\varnothing) = 0$
- 2 Bel(Θ) = 1
- 3 $\operatorname{Bel}(A_1 \cup ... \cup A_n) \ge$ $\sum_{i} \operatorname{Bel}(A_i) - \sum_{i < j} \operatorname{Bel}(A_i \cap A_j) + ... + (-1)^{n+1} \operatorname{Bel}(A_1 \cap ... \cap A_n)$

Plausibility is defined by $Pl(A) = 1 - Bel(\sim A)$

Basic probability assignments are

functions $m: 2^{\Theta} \rightarrow [0, 1]$ such that:

1
$$m(\emptyset) = 0$$

$$2 \sum_{A \subset \Theta} m(A) = 1$$

Then we may define $Bel(A) = \sum_{B \subseteq A} m(B)$

Example:

- * Consider a frame with three possible outcomes $\{a,b,c\}$
- * Suppose we are given the following basic probability assignment:

$$m({a}) = .1; m({b}) = .1; m({c}) = .1;$$

 $m({a,b}) = .1; m({a,c}) = .2; m({b,c}) = .3;$
 $m({a,b,c}) = .1$

	Bpa	Bel
Ø	0	0
{a}	.1	.1
{b}	.1	.1
{c}	.1	.1
{a,b}	.1	.3
{a,c}	.2	.4
{b,c}	.3	.5
{a,b,c}	.1	1

	Bpa	Bel	PI
Ø	0	0	0
{a}	.1	.1	.5
{b}	.1	.1	.6
{c}	.1	.1	.7
{a,b}	.1	.3	.9
{a,c}	.2	.4	.9
{b,c}	.3	.5	.9
{a,b,c}	.1	1	1

Bpas may be recovered from Bel functions using

$$m(A) = \sum_{B \subset A} (-1)^{|A-B|} \operatorname{Bel}(B)$$

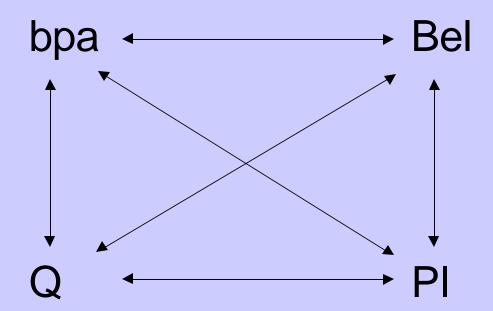
The *commonality* function is a function $Q: 2^{\Theta} \rightarrow [0, 1]$ defined by $Q(A) = \sum_{A \subset B} m(B)$

Bpas may be recovered from commonality functions using

$$m(A) = \sum_{A \subseteq B} (-1)^{|B-A|} Q(B)$$

	Bpa	Bel	PI	Q
Ø	0	0	0	1
{a}	.1	.1	.5	.5
{b}	.1	.1	.6	.6
{c}	.1	.1	.7	.7
{a,b}	.1	.3	.9	.2
{a,c}	.2	.4	.9	.3
{b,c}	.3	.5	.9	.4
{a,b,c}	.1	1	1	.1

- Recall that the bpa function can be uniquely recovered from PI, Bel or Q
- In fact, we can convert any one of the four representations uniquely into any of the others
- These conversions are examples of Möbius transforms
- There are Fast Möbius Transforms to do this efficiently (see Kennes paper)



- In expert systems based on belief functions:
 - * user inputs are often in the form of bpas
 - * propagation is most efficient implemented via commonalities
 - * marginalization is most efficient implemented via Bel functions
 - * output is often desired as Bel or Pl functions

- Dempster's Rule
 - * Consider two belief functions given by their bpas as follows:

$$m_1(\{a\}) = .5; m_1(\{\sim a\}) = .3; m_1(\{a,\sim a\}) = .2;$$

 $m_2(\{a\}) = .7; m_1(\{\sim a\}) = .2; m_1(\{a,\sim a\}) = .1$

				m ¹		
			{ <i>a</i> }	{~a }	{ <i>a</i> ,~ <i>a</i> }	
			0.5	0.3	0.2	
	{ <i>a</i> }	0.7	0.7x0.5=0.35	0.7x0.3=0.21	0.7x0.2=0.14	
			{ <i>a</i> }	-	{ <i>a</i> }	
m ²	{~a}	0.2	0.2x0.5=0.10	0.2x0.3=0.06	0.2x0.2=0.04	
			-	<i>{∼a}</i>	<i>{~a}</i>	
	{ <i>a</i> ,~ <i>a</i> }	0.1	0.1x0.5=0.05	0.1x0.3=0.03	0.1x0.2=0.02	
			{ <i>a</i> }	{~a }	{ <i>a</i> ,∼ <i>a</i> }	
$ m_{1} \otimes m_{2} (\{a\}) = \frac{0.35 + 0.14 + 0.05}{1 - (0.21 + 0.10)} = \frac{0.54}{0.69} = 0.783 $ $ m_{1} \otimes m_{2} (\{a\}) = \frac{0.06 + 0.04 + 0.03}{1 - (0.21 + 0.10)} = \frac{0.13}{0.69} = 0.188 $ $ m_{1} \otimes m_{2} (\{a, \sim a\}) = \frac{0.02}{1 - (0.21 + 0.10)} = 0.029 $						

■ Note, however, the following:

	m_1	Q_1	m_2	Q_2	$Q_1 x Q_2$	m
{a}	.5	.7	.7	.8	.56	.54
{~a}	.3	.5	.2	.3	.15	.13
{a,~a}	.2	.2	.1	.1	.02	.02

After normalization, these are the same values as derived from Dempster's Rule

- In expert system applications, therefore, it is efficient to:
 - * use Fast Möbius Transforms to convert bpas to commonalities
 - * combine the commonalities by pointwise multiplication
 - * (eventually) use Fast Möbius Transforms to convert the results back to bpas or other desired outputs

- If A is a subset of the frame Θ of a belief function, then A is a *focal element* if m(A) > 0
- The core of a belief function is the union of all its focal elements
- If, for some subset A, m(A) = s and $m(\Theta) = 1 s$ then m is a simple support function
- Thus a *simple support function* has only one focal element other than the frame itself

- A belief function that is the combination of one or more simple support functions is called a separable support function
- A belief function that results from marginalizing a separable support function may not itself be separable; it is called a support function; Shafer suggests these are fundamental for the representation of evidence

Simple support functions

Separable support functions

 $\overline{}$

Support functions

Belief functions

A belief function whose focal elements are nested is called a consonant belief function

- A belief function that is not a support function is called a *quasi support function*
- Quasi support functions arise as the limits of sequences of support functions
- A belief function for which $\operatorname{Bel}(A \cup B) = \operatorname{Bel}(A) + \operatorname{Bel}(B)$ whenever $A \cap B = \emptyset$ is called a Bayesian belief function
- Equivalently, a Bayesian belief function is a belief function all of whose focal elements are singletons
- Bayesian belief functions are quasi support functions (except when $Bel(\{q\})=1$ for some $q \in \Theta$)

- Belief functions can be propagated locally in Join Trees (Markov Trees) using the Shenoy-Shafer algorithm
- Belief functions can also be propagated locally in Junction Trees using the Aalborg architecture; this requires division (of commonalities) and intermediate results may not be interpretable
- In practice, it is most efficient to perform combination using commonalites and marginalization using Bels

- Xu and Kennes give efficient algorithms for carrying out belief function combination, for bit-array representations of subsets, and for Fast Möbius Transforms
- The bit-array representation includes algorithms for testing subsets, forming intersections, unions, etc directly with the bit-arrays
- Full details of the Fast Möbius Transform algorithms are given in Kennes

- Efficient implementations are especially important for belief functions
 - * n binary variables generate a joint space with 2^n configurations in probability systems
 - * n binary variables generate a joint space with 2^{2^n} potential focal elements in belief function systems

- "AND" nodes can be defined in belief function terms
 - * Suppose we wanted to create a relationship showing that a variable A is true iff variables B and C are both true
 - * In a Bayesian network, we could use:

$$\begin{bmatrix} a,b,c & 1\\ a,b,\sim c & 0\\ a,\sim b,c & 0\\ a,\sim b,\sim c & 0\\ \sim a,b,c & 0\\ \sim a,b,\sim c & 1\\ \sim a,\sim b,c & 1\\ \sim a,\sim b,\sim c & 1 \end{bmatrix}$$

- "AND" nodes can be defined in belief function terms
 - * Suppose we wanted to create a relationship showing that a variable A is true iff variables B and C are both true
 - * What would we use for belief functions?

- "AND" nodes can be defined in belief function terms
 - * Suppose we wanted to create a relationship showing that a variable A is true iff variables B and C are both true
 - * What would we use for belief functions?

$$[\{(a,b,c),(\sim a,b,\sim c),(\sim a,\sim b,c),(\sim a,\sim b,\sim c)\}|1]$$

- Discounted "AND" nodes can also be defined
 - Suppose we want A to be certain if B and C are both certain, but B and C both to be true with probability 0.95 when A is certain

$$\begin{bmatrix} a,b,c & 1 \\ a,b,\sim c & 0 \\ a,\sim b,c & 0 \\ a,\sim b,\sim c & 0.0526 \\ \sim a,b,c & 0 \\ \sim a,b,\sim c & 1 \\ \sim a,\sim b,c & 1 \\ \sim a,\sim b,\sim c & 0.9474 \end{bmatrix}$$

- Discounted "AND" nodes can also be defined
 - Suppose we want A to be certain if B and C are both certain, but B and C both to be true with bpa 0.95 when A is certain

$$\begin{bmatrix}
\{(a,b,c),(\sim a,b,\sim c),(\sim a,\sim b,c),(\sim a,\sim b,\sim c)\} \\
\{(a,b,c),(a,\sim b,\sim c),(\sim a,b,\sim c),(\sim a,\sim b,c),(\sim a,\sim b,\sim c)\} \\
0.95
\end{bmatrix}$$

- Shafer & Srivastava show how to apply mean-per-unit sampling using belief functions
- Gillett & Srivastava show how to perform attribute sampling using belief functions
- Gillett shows how to apply monetary unit sampling using belief functions

- Elicitation of bpas from domain experts is potentially more difficult even than for probabilities, partly because of unfamiliarity, but more importantly because far more parameters need to be obtained
- Eliciting expert beliefs in a sufficiently general way that they can be interpreted as either probabilities or bpas for comparative studies is even trickier!

One possibility

- * Elicit two parameters
 - ◆ The ratio f estimating how much more support the evidence provides for the objective than against it
 - ◆ The degree of indeterminacy i estimating the extent to which the evidence fails to provide persuasive evidence for or against the objective

- One possibility
 - For probabilities

$$\left[\begin{array}{c} o \\ \hline 1+f \\ \\ \sim o \\ \hline 1+f \end{array} \right]$$

- One possibility
 - * For belief functions

$$\begin{array}{c|c}
o & \frac{f-i}{1+f} \\
\sim o & \frac{1-f\times i}{1+f} \\
o,\sim o & i
\end{array}$$

- As in the case of probabilities, joint valuations cannot be uniquely determined from marginals (which is often all domain experts provide)
- Depending on the application, however, "best" or "worst" cases can sometimes be identified

- The Shafer & Srivastava paper we read for today sets out extensive arguments why belief functions might be considered superior to probabilities for certain applications, such as auditing
- Among these reasons, the one that first attracted me to study belief functions when I was building an Expert System is the argument that they better represent ignorance
- In auditing, for example, accounts receivable, insufficient replies from customers might lead us to assess a probability of, say, only 70% that accounts receivable exist
- Probability theory then forces us to assess a 30% probability that they do not exist, despite the fact that there is no evidence they do not - merely insufficient evidence that they do

- Belief functions allow us to assign a 70% bpa to existence, and the balance to the whole frame, representing ignorance
- In probability theory there would be no difference if some of the missing customers in fact wrote to deny the existence of the balance
- Using belief functions, however, we could assign some part of the bpa to represent contrary evidence, and the remainder to ignorance perhaps $m(exist) = 0.7; m(\sim exist) = 0.2; m(exist, \sim exist) = 0.1$
- Of course, in belief function terms, complete ignorance is represented by $m(exist, \sim exist) = 1$: it must be one of the outcomes, we don't know which, or which is more likely
- Probabilistically, ignorance is represented as $P(exist) = P \sim (exist) = 0.5$ and we have to assume the outcomes equally likely