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Mid-Term Examination

?
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Possibility Theory

n Possibility Theory is a computational
implementation (largely inspired by Dubois
and Prade) of Zadeh’s Fuzzy Logic

n Shenoy showed that it may be re-formulated
as a variant of Valuation Networks, so that
possibilities may be propagated in Join Trees
using the Shenoy-Shafer algorithm
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Possibility Theory

n A possibility function is a function

such that:

and

[ ]: 2 0,1pΩπ →

( ): 1px x∃ ∈Ω π =

( ) ( ){ }2 : maxpa a x x aΩ∀ ∈ π = π ∈
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Possibility Theory

n By virtue of this second condition,
possibility functions are completely
determined by their values for singleton
elements

n Intuitively, the degree of possibility for a
subset a is
and the degree of impossibility is

( )1 ~ a− π
( )1 a− π
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Possibility Theory

n Marginalization

n Combination

where

{ }
{ } ( ) ( ){ }: max ,a X

Xa Xy y y x x↓ −
−∀ ∈Ω π = π ∈Ω

( ) ( ) ( )1
1 2

1 2

     0

0                                  0

a bK x x K
x

K

− ↓ ↓ π π ≠π ⊗ π = 
=

( ) ( ){ }max a b
a bK x x x↓ ↓

1 2 ∪= π ⋅ π ∈Ω
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Possibility Theory

Example: Marginalization

Objective 1   Objective 2     Possibility

    true              true                   1
    true              false                 .5
    false             true                  .3
    false             false                 .1
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Possibility Theory

Example: Marginalization

Objective 1 Possibility

     true              1
     false            .3
Objective 2 Possibility

     true              1
     false            .5
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Possibility Theory

n So for Objective 1, the degree of
possibility for “true” is 0.7, and the
degree of impossibility is 0

n Similarly, for Objective 2, the degree of
possibility for “true” is 0.5, and the
degree of impossibility is 0
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Possibility Theory

Example: Combination

Objective 1 Possibility

      true              1
      false            .4
Objective 1 Possibility

      true              1
      false            .6
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Possibility Theory

Example: Combination

Objective 1 Possibility

      true              1
      false            .24
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Possibility Theory

Example: Combination

Objective 1 Possibility

      true              1
      false            .4
Objective 1 Possibility

      true             .6
      false             1
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Possibility Theory

Example: Combination

Objective 1 Possibility

      true             .6
      false            .4
Objective 1 Possibility

      true              1
      false            .67
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Possibility Theory

n We can represent complete ignorance
using possibilities as follows:

 Objective 1   Objective 2     Possibility

    true              true    1
    true              false    1
    false             true    1
    false             false    1
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Possibility Theory

n We can define logical relationships such
as “AND” nodes as follows: A= B&C:
A B C Possibility
a b c      1
a b ~c      0
a ~b c      0
a ~b ~c      0
~a b c      0
~a b ~c      1
~a ~b c      1
~a ~b ~c      1
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Possibility Theory

n Discounted “AND” nodes as discussed for
probabilities and belief functions CANNOT be
defined

n Dubois and Prade argue that statistical
sampling is contrary to the non-probabilistic
nature of possibility theory: however, it seems
that it could be incorporated using normalized
maximum likelihood functions
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Possibility Theory

n Joint possibilities generally cannot be uniquely
determined from marginals, as for probabilities and
belief functions:
X Y P1 P2 P3
x y 1 1 1
x ~y .4 .4 .4
~x y .2 .2 0
~x ~y .2 .1 .2
have the same marginals for X and Y.

n However, when combined with an “AND” node, all
three produce the same results!!!
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Possibility Theory

n When multiple nodes are combined in an
“AND” node, the effect is that the degree of
possibility for the conjunction is equal to the
degree of possibility for the least possible
conjunct

n This is significantly different from probabilities
and belief functions, and is very relevant, for
example, to auditing
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Spohn’s Epistemic Calculus

n Spohn introduced his theory of
epistemic states in order to represent
plain human beliefs in a non-
probabilistic way easily amenable to
revision

n Initially they were based on functions
mapping into the ordinals; later he
changed this to the natural numbers
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Spohn’s Epistemic Calculus

n For technical reasons, we will define
disbeliefs as functions mapping to the
natural numbers extended by adding a
representation of infinity, ∞
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Spohn’s Epistemic Calculus

n A disbelief function is a function

such that:

and

: 2 d NΩ +δ →

( ): 0px x∃ ∈Ω π =

( ) ( ){ }2 : minda a x x aΩ∀ ∈ δ = π ∈
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Spohn’s Epistemic Calculus

n By virtue of this second condition,
disbelief functions are completely
determined by their values for singleton
elements

n Intuitively, the degree of disbelief for a
subset a is
and the degree of belief is

( )aδ
( )~ aδ
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Spohn’s Epistemic Calculus

n Marginalization

n Combination

where

{ }
{ } ( ) ( ){ }: min ,a X

Xa Xy y y x x↓ −
−∀ ∈Ω δ = δ ∈Ω

( ) ( ) ( )1 2 1 2
a bx x x K↓ ↓δ ⊗ δ = δ + δ −

( ) ( ){ }min a b
a bK x x x↓ ↓

1 2 ∪= δ + δ ∈Ω
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Spohn’s Epistemic Calculus

Example: Marginalization

Objective 1   Objective 2     Disbelief

    true              true                  0
    true              false                 5
    false             true                  7
    false             false                 9
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Spohn’s Epistemic Calculus

Example: Marginalization

Objective 1 Disbelief

     true             0
     false            7
Objective 2 Disbelief

     true             0
     false            5
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Spohn’s Epistemic Calculus

Example: Combination

Objective 1 Disbelief

      true             0
      false            6
Objective 1 Disbelief

      true             0
      false            4
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Spohn’s Epistemic Calculus

Example: Combination

Objective 1 Disbelief

      true              0
      false            10
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Spohn’s Epistemic Calculus

Example: Combination

Objective 1 Disbelief

      true             0
      false            6
Objective 1 Disbelief

      true             4
      false            0
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Spohn’s Epistemic Calculus

Example: Combination

Objective 1 Disbelief

      true             4
      false            6
Objective 1 Disbelief

      true              0
      false             2
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Spohn’s Epistemic Calculus

n We can represent complete ignorance
using disbeliefs as follows:

 Objective 1   Objective 2     Disbelief

    true              true    0
    true              false    0
    false             true    0
    false             false    0



31

Spohn’s Epistemic Calculus

n We can define logical relationships such
as “AND” nodes as follows: A= B&C:
A B C Disbelief
a b c      0
a b ~c      ∞
a ~b c      ∞
a ~b ~c      ∞
~a b c      ∞
~a b ~c      0
~a ~b c      0
~a ~b ~c      0
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Spohn’s Epistemic Calculus

n Discounted “AND” nodes as discussed for
probabilities and belief functions CANNOT be
defined

n Statistical sampling is contrary to the
intended ordinal nature of epistemic
(dis)beliefs
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Spohn’s Epistemic Calculus

n Joint disbeliefs generally cannot be uniquely
determined from marginals, as for probabilities and
belief functions:
X Y P1 P2 P3
x y 0 0 0
x ~y 4 4 4
~x y 7 7 11
~x ~y 7 74 7
have the same marginals for X and Y.

n However, when combined with an “AND” node, all
three produce the same results!!!
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Spohn’s Epistemic Calculus

n When multiple nodes are combined in an
“AND” node, the effect is that the degree of
belief for the conjunction is equal to the
degree of belief for the least believed
conjunct

n This is significantly different from probabilities
and belief functions, and is very relevant, for
example, to auditing
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Spohn’s Epistemic Calculus

n In addition, Spohn’s system offers the
prospect of elicitation of ordinal
rankings rather than highly sensitive
real values
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Belief Functions

?


