
26:198:722 Expert Systems

n Machine learning

n Rule-based Expert Systems

n CLIPS

Machine Learning

n ASSISTANT uses Binarization
-------------Attributes------------- ---Decision---

Height Hb Hr Hd Eyes Attractiveness
1 short + - - blue +
2 tall + - - brown -
3 tall - + - blue +
4 short - - + blue -
5 tall - - + blue -
6 tall + - - blue +
7 tall - - + brown -
8 short + - - brown -

Machine Learning

n Applying Information Gain criterion, we
obtain:

Hd

Eyes 4, 5, 7

2, 81, 3, 6

blue brown

+ +

- --

- -+

+-

Machine Learning

k This gives us rules:
u (Hair, dark) --> (Attractiveness, -)
u (Hair, ~dark) & (Eyes, blue) --> (Attractiveness, +)
u (Hair, ~dark) & (Eyes, brown) --> (Attractiveness, -)

k and after dropping we obtain
u (Hair, dark) --> (Attractiveness, -)

u (Hair, ~dark) & (Eyes, blue) --> (Attractiveness, +)
u (Eyes, brown) --> (Attractiveness, -)

k Note that rules refer to original attributes, not the
binarized forms

Machine Learning

n ID4 is an incremental algorithm
developed by Schlimmer &Fisher

u Based on first case, no attributes needed - all
examples are attractive

u Based on first two cases, select best attribute
using ID3 (or C4.5 algorithm): Height

u Based on first three cases, select best attribute:
Eyes

u Etc. - ID4 will give same final result as ID3, but
take much longer!

Machine Learning

n ID4-hat
u Modifies ID4 by only re-building tree at each

stage if existing tree fails to classify new item
correctly - if the tree is not re-built,then it may
no longer be the best tree

u Now final tree may differ from ID3

u For both ID4 and ID4-hat, either stop when
entropy is 0 or maintain counts of the decision
outcomes e.g., (+, -) and stop when all except
one are 0

Machine Learning

n ID5 is an improved incremental
algorithm by Utgoff

u Start as for ID4
u As each new item is added, if it is not correctly

classified by the the existing tree, add the best
next attribute using information gain as usual
(otherwise keep the existing tree)

u BUT, at each stage, if the bottom attribute has
lower conditional entropy (for all items so far)
than the attribute above it, rebuild the tree by
splitting, inverting, merging and simplifying

Machine Learning

n ID5-hat
u In ID5, conditional entropies are re-checked

(and the tree re-structured if necessary)
whenever an item is added

u ID5-hat is the same as ID5, except that
conditional entropies are only re-considered
when an attribute has been added to a tree that
failed to classify the new item correctly

Machine Learning

n After rules are generated via machine
learning, we should check
k Are they complete?

k Are they consistent?

n As part of validation, we can count
errors
k If items are not classified

k If items are classified incorrectly

Machine Learning

n Of course, if the original table is inconsistent,
ID3-style algorithms cannot possibly classify
without error

n Hence, Quinlan decided to simplify the tree by
pruning: this still produces errors, but at lower
cost

n From C4 onwards, Quinlan decided to prune
even when no errors - this introduces error, but
makes the tree more general and less dependent
on the training set

Machine Learning

n Quinlan experimented with a variety of
pruning algorithms, e.g.
k cost-complexity pruning

k test

n C4.5 pruning is quite sophisticated,
based on the Binomial distribution

2χ

Machine Learning

n Suppose there are N examples, and x is
some number of classification errors (i.e
cases not classified or mis-classified),
based on an error rate of π

n Then

n Now let

() (), 1
N xxN

P x E
x

π π − 
= − 

 

() ()25%
1

, , 0.25
x E

df
x

U E N P x Nπ
=

=

= =∑

Machine Learning

n In other words, is the
predicted error rate that gives a total
probability of 25% that the actual
number of errors in N examples is E or
less

n 25% is the default value in C4.5,
although it can be changed

()25% ,U E N

Machine Learning
n Some useful values of :

k N E U
1 0 .750

2 0 .500
2 1 .866

3 0 .370

3 1 .674
3 2 .909

4 0 .293

4 1 .544
4 2 .757

4 3 .931

()25% ,U E N

Machine Learning

k Recall the final ID3 tree from Class 4:

k and consider whether the ‘Eyes’ node
should be pruned

Hair

Eyes 3 4, 5, 7

2, 81, 6

blond
red

dark

blue brown

+ +

+ - --

- -

Machine Learning

n Before pruning
k Eyes: blue has two examples (1 and 6), neither

incorrectly classified
u so predicted error rate is .500

u hence predicted number of errors is 2 x .500 = 1

k Eyes: brown has two examples (2 and 8), neither
incorrectly classified

u so predicted error rate is .500

u hence predicted number of errors is 2 x .500 = 1

k Hence total predicted number of erros is 1 + 1 = 2

Machine Learning

n If Eyes pruned
k Four examples (1, 2 , 6, 8) must all be treated as

the same
k Select whether + or - by voting: in this case, it is a

2-2 tie, so select + (occurs first)

k Now there are 2 errors in four cases (two ‘-’ that
will be treated as ‘+’) - so the predicted error rate
is .757

k Hence the predicted number of errors is
4 x .757 = 3.028

Machine Learning

n Pruning takes place only if it does not
increase the predicted number of errors
k In this case, it makes no sense to prune

n C4.5 pruning is based on applying this
method recursively to the leaves of the tree
k Once pruning of a branch stops, it obviously does

not continue upwards

k To avoid branches with single values, heuristically
C4.5 does not even try to separate classes that
are already reduced to only two elements

Machine Learning

n ID3-style algorithms also have problems
with missing attributes. There are
several possible approaches to this:
k Ignore examples with missing data

k Treat “missing” as a special value

k Probabilistic approaches (e.g., C4.5)

k Switch attribute and decision

k Replicate example for all possible values

Machine Learning

n C4.5 chooses an attribute by considering entropies of
each for those cases for which data is given

n Thus H(decision) may now vary for each attribute
n Information gain (ratio) is reduced pro-rata to

proportion of complete cases to all cases

n When the best attribute is chosen, for purposes of
later choices, missing cases are allocated fractionally
to values of the attribute in proportion to cases for
which data is available, and the algorithm continues

Machine Learning

n C4.5 also includes techniques to
discretize “continuous” data:
k Choose the best attribute using entropy

u C4.5 use of information gain ratio will be important here
to counteract bias of ID3 in favor of attributes with many
different values

k Make a binary split of the chosen attribute using
minimum class entropy

k Divide the examples into two sub-tables

k Recurse

Rule-based Expert Systems

n Production Rules
k Derived from rewrite rules in grammars

k Emil Post (1943) studied canonical
systems

k Newell and Simon (1972) used for
psychological modeling

k Buchanan and Feigenbaum (1978) used
for Expert Systems

Rule-based Expert Systems

n Canonical Systems
k An alphabet A for making strings

k Some strings that are taken as axioms
k A set of productions of the form

u each and is a fixed string

u and are often null
u some or all of the or may be null
u each is a variable string which can be null

u each is replaced by a certain

' '
11 1 1$... $ $... $ nm m nα α β β→

iα
iβ

1α mα

iα iβ
$i

$i
'$ i

Rule-based Expert Systems

n Canonical Systems
k Rewrite strings of symbols

k Any formal system can be realized as a
canonical system

Rule-based Expert Systems

n Production Rules
k A set N of objects in the domain

k A set P of property names that impute
attributes to objects

k A set V of values that these attributes can
take

k Object-attribute-value triples
u (Pastis, alcohol-content, high))

Rule-based Expert Systems

n Production Systems
k Rule set

u Production memory

k Rule interpreter
u Decides when to apply which rules

k Working memory
u Holds data, goal statements, and intermediate

results

Rule-based Expert Systems

n Production Rules

read as
k if premises and . . . and are true

then perform actions and . . . and

n Premises are often known as conditions
and actions as conclusions

1 1,..., ,...,m nP P Q Q→

1P mP

1Q nQ

Rule-based Expert Systems

n Premises are usually represented by
object-attribute-value vectors

n Premises are patterns that are meant to
match vectors in working memory

n Actions modify working memory
n Variables are used as placeholders for

matching

Rule-based Expert Systems

n If a condition contains no variables, it is
satisfied when an identical expression is
present in working memory

n If a condition contains one or more variables,
it is satisfied when there is an expression in
working memory with an attribute-value pair
which matches it in a way that is consistent
with the way in which other conditions in the
same rule have already been matched

Rule-based Expert Systems

n Recognize-Act Cycle
k Match premise patterns of rules against

elements in working memory

k If there is more than one rule that could
fire, then choose on to apply; this step is
called conflict resolution

k Apply the rule, perhaps adding a new item
to working memory or deleting and old
one, and then iterate

Rule-based Expert Systems

n Recognize-Act Cycle
k Computation halts if there is a cycle in

which no rules become active, or if the
action of a fired rule contains an explicit
command to halt

k Sets of pairs of rules and variable bindings
derived from pattern matching are called
instantiations

Rule-based Expert Systems

n Deterministic rule sets only ever have one
rule eligible to fire

n Global control
k Domain-independent

k Hard-coded into the interpreter

n Local control
k Domain-dependent

k Meta-rules

k Soft-coded by the programmer

Rule-based Expert Systems

n Set of rules eligible to fire is called the
conflict set
k In CLIPS, it is called the agenda

n Good conflict resolution strategies will
exhibit sensitivity and stability

Rule-based Expert Systems

n Conflict Resolution
k Refractoriness

u Rules should not be allowed to fire more than once on
the same data

k Recency
u Rules which use more recent data are preferred

k Specificity
u Instantiations derived from more specific rules (having

more conditions) are preferred to more general rules

k Salience
u Assign priorities explicitly

Rule-based Expert Systems

n Conflict Resolution in CLIPS
k Depth strategy (recency)
k Breadth strategy (non-recency)
k Simplicity strategy
k Complexity strategy
k LEX

u refraction, salience, recency, specificity

k MEA (Means-End Analysis)
u for backward reasoning

Rule-based Expert Systems

n Conflict Resolution - Examples
k Rules

u R1 A & B --> C
u R2 A & ~D --> E
u R3 C & ~D --> E
u R4 C & D --> F
u R5 E & F --> L
u R6 E & H --> ~G
u R7 E & ~H --> G
u R8 I --> J
u R9 J --> K

Rule-based Expert Systems

n Conflict Resolution - Examples
k Conflict Resolution

u Rules are ordered according to their names

u The first applicable rule is selected

u During each session, each rule may be fired
only once

Rule-based Expert Systems

n Conflict Resolution - Examples
k What are the contents of working memory

u After forward-chaining if the initial contents are {A, B, ~D, ~H, I}
u After forward-chaining if the initial contents are {A, B, D, E, I}

k Is the goal {L} supported
u After backward-chaining if the initial contents are {A, B, ~D, E}

k Is the goal {K, L} supported
u After backward-chaining if the initial contents are {A, ~D, ~H, I}

Rule-based Expert Systems
n Conflict Resolution - Examples (1)

k WM: A, B, ~D, ~H, I CS: R1, R2, R8
u R1 selected first: C added

k WM: A, B, ~D, ~H, I, C CS: R2, R3, R8
u R2 selected first: E added

k WM: A, B, ~D, ~H, I, C, E CS: R3, R7, R8
u R3 selected first: no new fact added

k WM: A, B, ~D, ~H, I, C, E CS: R7, R8
u R7 selected first: G added

k WM: A, B, ~D, ~H, I, C, E, G CS: R8
u R8 selected: J added

k WM: A, B, ~D, ~H, I, C, E, G, J CS: R9
u R9 selected: K added

k WM: A, B, ~D, ~H, I, C, E, G, J, K (empty)
u forward-chaining halts

Rule-based Expert Systems

n Conflict Resolution - Examples (2)
k WM: A, B, D, E, I CS: R1, R8

u R1 selected first: C added

k WM: A, B, D, E, I, C CS: R4, R8
u R4 selected first: F added

k WM: A, B, D, E, I, C, F CS: R5, R8
u R5 selected first: L added

k WM: A, B, D, E, I, C, F, L CS: R8
u R8 selected: J added

k WM: A, B, D, E, I, C, F, L, J CS: R9
u R9 selected: K added

k WM: A, B, D, E, I, C, F, L, J, K (empty)
u forward-chaining halts

Rule-based Expert Systems

n Conflict Resolution - Examples (3)
k Goal: L
k WM: A, B, ~D, E

k L not in WM, ~L not in WM CS: R5

k Sub-goals: E, F
k Goal: E

k E is in WM

k Goal F
k F not in WM, ~F not in WM CS: R4

k Sub-goals: C, D

k Goal: C
k C not in WM, ~C not in WM CS: R1

Rule-based Expert Systems

n Conflict Resolution - Examples (3)
k Sub-goals: A, B
k A is in WM

k B is in WM

k R1 fires: C added to WM
k WM: A, B, ~D, E, C

k Goal: D

k D is not in WM, ~D is in WM
k D cannot be supported

k R4 cannot be fired

k No other rule can be found to support F
k R5 cannot be fired

Rule-based Expert Systems

n Conflict Resolution - Examples (3)
k No other rule can be found to support L
k The goal L is not supported

Rule-based Expert Systems

n Conflict Resolution - Examples (4)
k Goal: K, L
k WM: A, ~D, H, I

k K not in WM, ~K not in WM CS: R9

k Sub-goals: J
k Goal: J

k J not in WM, ~J not in WM CS: R8

k Sub-goal: I
k Goal: I

k I is in WM

k R8 fires: J added to WM
k WM: A, ~D, H, I, J

Rule-based Expert Systems

n Conflict Resolution - Examples (4)
k R9 fires: K is added to WM
k WM: A, ~D, H, I, J, K

k L not in WM, ~L not in WM CS: R5

k Sub-goals: E, F
k Goal: E

k E not in WM, ~E not in WM CS: R2, R3

k Sub-goals: A, ~D
k A is in WM

k ~D is in WM

k R2 fires: E is added to WM
k WM: A, ~D, H, I, J, K, E

Rule-based Expert Systems

n Conflict Resolution - Examples (4)
k Goal: F
k F not in WM. ~F not in WM CS: R4

k Sub-goals: C, D

k Goal: C
k C not in WM, ~C not in WM CS: R1

k Sub-goals: A, B

k Goal: A
k A is in WM

k Goal: B

k B not in WM, ~B not in WM (empty)
k No other rule can be found to support B

Rule-based Expert Systems

n Conflict Resolution - Examples (4)
k Rule R1 cannot be fired
k No other rule can be found to support C

k Rule R4 cannot be fired

k No other rule can be found to support F
k Rule R5 cannot be fired

k No other rule can be found to support L

k The goal L cannot be supported
k The goal {K, L} cannot be supported

Rule-based Expert Systems
n CLIPS

k Essentially forward-chaining
k LHS drives reasoning (for MYCIN it was

RHS)
k Note that we can distinguish

u Directionality of chaining
u Directionality of reasoning

k Even with forward chaining we can force
top-down reasoning by manipulating goal
tokens

Rule-based Expert Systems

n Meta-Rules
k Direct reasoning rather than performing

reasoning

k Admit uncertainty

k Not available in CLIPS
u But influence over preferential rule selection

can be exerted via salience

u Beware of excessive reliance on salience

Rule-based Expert Systems

n Production rule system are non-
monotonic (and therefore non-classical)
since actions can delete facts from
working memory

n 90% of the time in inferencing is spent
in matching patterns (and instantiation)

n The RETE algorithm is applied here

Rule-based Expert Systems

n Pattern matching
k RETE

u The RETE pattern-matching algorithm used in
CLIPS and many other production rule systems
is intended to improve the speed of forward-
chaining by limiting the effort required to re-
compute the conflict set after a rule is fired.

u Its drawback is that it has high memory space
requirements

Rule-based Expert Systems

n Pattern matching
k RETE

u RETE takes advantage of two empirical
observations

è temporal redundancy
– The firing of a rule usually changes only a few

facts, and only a few rules are affected by each
of these changes

è structural similarity
– The same pattern often appears in the LHS of

more than one rule

Rule-based Expert Systems

n Pattern matching
k RETE

u RETE uses a rooted directed acyclic graph where nodes
other than the root represent patterns and paths from the
root to the leaves represent the LHS of rules. At each
node is stored information about the facts satisfied by the
patterns of the nodes in the paths from the root up to and
including this node. This information is a relation
representing the possible values of the variables
occurring in the patterns in the path

Rule-based Expert Systems
n Pattern matching

k RETE
u RETE keeps up-to-date the information associated with

the nodes in the graph. When a fact is added or
removed, a token representing that fact and operation is
entered at the root and propagated to the leaves

u The RETE graph consists of a root node, one-input
pattern nodes, and two-input join nodes

u For each rule and pattern we create a one-input alpha
node

u For each rule we construct two-input beta nodes from its
alpha nodes

Rule-based Expert Systems

n RETE
k For further details, see the document at

http://yoda.cis.temple.edu:8080/UGAIWWW/lectures/rete.html

Rule-based Expert Systems

n As a consequence of the design of RETE, it
is important to tune the rules so that large
numbers of partial matches are not generated

n Patterns may be ordered so as to improve
efficiency:
k Most specific patterns go first

k Patterns matching volatile facts go last

k Patterns matching the fewest facts go first

n but these guidelines may conflict!

CLIPS

n C Language Integrated Production System

n Developed by NASA in the mid-1980s

n Production rule language
n Procedural language

n Fact base

n Rule base
n Recognize-Act Cycle

CLIPS

n Facts
k (assert (today is Sunday))

k (facts)

k (retract 1)

k (clear)

k (load “myfile”)

k (reset)

CLIPS

n Rules
k (defrule chores

“Things to do on Sunday”
(salience 10)
(today is Sunday) (weather is warm)
=>
(assert (wash car)) (assert (chop wood)))

k Variables
u ?day
u $?

CLIPS

n Commands
k (run)

k (refresh)

k (watch rules)

k (dribble-on “dribble.clp”)

k (agenda)

k (list-defrules)

k (list-deffacts) etc.

CLIPS

n Templates
k Resemble simple records

k (deftemplate student “Student Record”
(slot name (type STRING))
(slot age (type NUMBER) (default 18)))

n Functions
k (deffunction hypotenuse (?a ?b)

(sqrt (+ (* ?a ?a) (* ?b ?b))))

CLIPS

n COOL
k CLIPS Object-Oriented Language

k Objects help manage complexity by
keeping rules clean and simple,
implementing mechanisms for data update
as class message handlers

k ‘Pistol’ example program

CLIPS

n Advanced Features
k Contexts

k Backtracking

k Incremental system development

k Handling “reported speech”

k Computational mechanisms
u Forward reasoning with conflict resolution
u Goal-directed reasoning using task tokens

u Multiple contexts based on different assumption

k ‘Truth Games’ example program

CLIPS

n Programming Project
k Car Troubleshooting

u Interactive system

u Forward and backward chaining

u Due October 21

