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Representing Uncertainty

n Sources of Uncertainty
k Unreliable sources of data and information
k Abundance of irrelevant data
k Imprecision of language and perception
k Lack of understanding
k Faulty equipment
k Conflicting sources of data
k Hidden or unknown variables
k Unknown or poorly specified rules or procedures
k Data difficult or expensive to obtain
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Representing Uncertainty

n Inexact methods
k Exact methods are not known
k Exact methods are impracticable

n Epistemological adequacy
k Interaction of probabilities with quantifiers
k Probabilities require information that is not available

n Also
k Imprecise or vague terms not handled
k Too many numbers
k Expensive, intractable
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Representing Uncertainty

n Conditional probability

n Bayes’ Rule
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Representing Uncertainty

n Criticisms of relevance and applicability
of objective probabilities (based on
long-run frequencies)

n Consideration of subjective probabilities
k Bayesian updating important here
k Subjective probabilities must exhibit

u Coherence
u Total Evidence
u Conditionalization

k In practice bounded rationality makes this difficult
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Representing Uncertainty
n The more general form of Bayes’ rule

requires computation of
probabilities (for m diseases and n
symptoms)

n Tractability requires independence
assumptions
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Representing Uncertainty

n Probability theory thus leaves us with a
trade-off
k assume data are independent

u fewer numbers
u simpler calculations
u sacrifice accuracy

k track dependencies
u pay computational price
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Representing Uncertainty

n Kahneman & Tversky etc.
k Humans are poor Bayesian reasoners
k Discount prior odds
k Recency effects
k Over-confident in judgments
k Poor understanding of sampling theory

n N.B. Constructive probabilities
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Representing Uncertainty

n Vagueness and possibility
k Fuzzy set theory

u crisp sets
u fuzzy sets
u degrees of membership
u relates to many-valued logic
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Representing Uncertainty

n Vagueness and possibility
k Fuzzy logic

u min for conjunction
u max for disjunction
u commutative
u associative
u mutually distributive
u compositional

k Possibility theory
u precise questions - imprecise knowledge
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Certainty Factors

n Designed originally for use in MYCIN
n CF: {propositions} --> [-1, +1]

k CF(X) = 1 X is certainly true
k CF(X) = -1 X is certainly false
k CF(X) = 0 X is entirely unknown

n Generally:
CF(action)= CF(rule) x CF (Premise)
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Certainty Factors
n As applied in MYCIN

k IF patient has symptoms s1 & . . . & sk
and background conditions t1 & . . . & tm
THEN conclude patient has disease di
with certainty τ

n Background knowledge constrains application of the rules
n Buchanan & Shortcliffe argue that rigorous application of

Bayes’ rule would not be more accurate because
conditional probabilities are subjective

n They intend CFs and their associated manipulations as
approximations of probabilistic reasoning
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Certainty Factors

n Computation of certainty factors is modular (Pearl)
k i.e., we don’t need to consider information not contained in

the rule
k conditional probabilities are not modular in this sense
k thus, when A is true, we cannot conclude

from                   unless A is all that we know
k otherwise, if we acquire additional knowledge E, we may

need to consider

( )P B τ=
( )P B A τ=

( )P ,B A E
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Certainty Factors
n In order to combine support provided by two

different rules, Shortcliffe & Buchanan looked
for a method that was
k commutative

u independent of order of firing

k asymptotic
u certainty arises only from an absolute proof

n Note also the argument in S & B (1975) that
imperfect evidence in favor of a hypothesis is
not to be construed as evidence against it
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Certainty Factors

n This is expressed rather more formally:

confirmation is not 1 - disconfirmation
n This is an idea we will re-visit e.g. when

we consider Dempster-Shafer Belief
Functions and their potential application
in auditing

[ ] [ ]C , 1 C ,h e h e≠ − ¬
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Certainty Factors

n Measure of Belief
k the measure of increased belief in the

hypothesis h, based on the evidence e, is x

n Measure of Disbelief
k the measure of increased disbelief in the

hypothesis h, based on the evidence e, is y

[ ]MB ,h e x=

[ ]M D ,h e y=
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Certainty Factors

n Formal definitions in terms of probability
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Certainty Factors

n Characteristics

              if h is not confirmed by e
                       if h is not disconfirmed by e
                       if h is neither confirmed nor disconfirmed by e
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Certainty Factors

n CF as defined here has the desired
property
k confirmation is not 1 - disconfirmation

n In fact
k confirmation + disconfirmation = 0

n CF judgments must be elicited carefully
from experts to ensure that they respect
the constraints implied by these formal
definitions
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Certainty Factors

n Defining criteria
k Limits

k Absolutes
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Certainty Factors

n Defining criteria
k Commutativity

k Missing information
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Certainty Factors

n Combining functions
k Incrementally acquired evidence
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Certainty Factors

n Combining functions
k Conjunctions of hypotheses

k Disjunctions of hypotheses
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Certainty Factors

n Strength of evidence
k Suppose evidence s1 is not known with certainty,

but a CF based on prior evidence e is known. If
MB' and MD' are the degrees of belief and
disbelief when s1 is known with certainty, then the
actual degrees of belief and disbelief are given by
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Certainty Factors

n Note that in S & B (1975) MYCIN
computes and maintains MBs and MDs
separately, only computing CFs at the
end, although CFs are then used to
generate recommendations

n This differs from “simplifed” explanation
e.g. in Durkin Chapter 12
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Certainty Factors

n In accordance with the limiting properties,
multiple items of confirming evidence will
result in MB --> 1 (say, 0.99)

n Suppose, however, we have a single item of
disconfirming evidence with MD = 0.8

n Then CF = MB - MD = 0.19, i.e., many
sources of confirmation have been almost
completely offset by a single disconfirming
item
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Certainty Factors

n To de-sensitize this effect, the definition
of CF was subsequently modified to

n Using this definition, the CF for our
example becomes
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Certainty Factors

n If we are only interested in updating
CFs without retaining MBs and MDs, we
can perform incremental updating using

( )
( )

( )
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1 2 1
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Certainty Factors

n CFs may be used
k to direct a best-first search
k to control search explicitly
k to prune the search

u e.g., to drop goals with when their CFs fall
within the range [-0.2, +0.2]

k to rank order hypotheses
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Certainty Factors

n Durkin recommends
k Obtain CFs from expert’s use of qualified terms
k Don’t elicit CFs directly
k Avoid deep inference chains (because

approximate departs increasingly from
probabilistic values)

k Avoid many rules with the same hypothesis
k Avoid rules with many premises - split into multiple

rules
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Certainty Factors

n Adam (1976) criticized certainty factors
k CF associated with a hypothesis by MYCIN does

not correspond to a simple probability model
based on Bayes’ rule

u did S & B (1975) claim that it did?

k Degrees of belief from different evidence cannot
always be chosen independently

u e.g., absolute diagnostic indicators

k min and max are not always appropriate for
conjunctions

u e.g., mutually exclusive alternatives
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Certainty Factors

k CF ranking may reverse probability ranking
u Suppose

u Note

u But

u Hence
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Certainty Factors

k Transitivity across chains of reasoning is
not generally valid

k CFs are defined from MBs and MDs in
terms of increases or decreases in belief,
but elicited for MYCIN as absolute values



34

Certainty Factors

n Heckerman (1986)
k Provides an example to show that the

S & B (1975) definition of CFs, in conjunction with
the rules for combining (incremental updating),
lead to non-commutativity

k His conclusion from this is that we should take
desirable properties of CFs as axiomatic, retain
the combination rules, and seek an alternative
formulation of CFs in probabilistic terms
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Certainty Factors

n Heckerman (1986)
k Axiomatizes the “desiderata” for certainty factors

using a somewhat modified (simplified) notation,
but formally conditioning on prior evidence,

k Exhibits an example of non-commutativity
k States a formal requirement for a probabilistic

interpretation of CFs
k Gives the odds-likelihood form of Bayes’ Theorem

( ) ( )
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O , O , , O
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Certainty Factors
n Heckerman (1986)

k Defines conditional independence of e and ep
given H and ¬H

k Shows that λ is a candidate for a probabilistic
interpretationof CFs except that it ranges from
0 to ∞

k Shows that any monotonic increasing
transformation of the likelihood ratio satisfying

is a probabilistic interpretation for CFs (and
conversely)

( ) ( ) ( )1F F and F 1xx = − ∞ =
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Certainty Factors

n Heckerman (1986)
k Gives specific examples of such transformations
k Observes that evidence combined using the S & B

combination functions is required to be
conditionally independent given both the
hypothesis and its negation

k Argues by example that the latter condition often
fails in practice

k Introduces axioms for sequential combination
(corresponding to strength of evidence in S & B)
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Certainty Factors

n Heckerman (1986)
k Shows that these new axioms do not

further constrain probabilistic
interpretations of CFs

k Demonstrates that although CFs have
been applied to non-tree inference
networks, updating is valid only in tree
structures (rarely applicable in complex
practical situations)
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Certainty Factors

n Rules may conveniently be organized
as an inference net, e.g.,

F

C E

DA B

V

&



40

Certainty Factors

n Rules:
k R1: A v B --> C CF = 0.8
k R2: D --> E CF = 0.7
k R3: C & E --> F CF = 0.9

n Facts
k A CF = 0.4
k B CF = 0.6
k D CF = 0.9
k C,E CF = 0
k F CF = 0.2
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Certainty Factors
n CF(A v B) = max(0.4, 0.6) = 0.6
n CF(R1’) = 0.8 x 0.6 = 0.48
n CF(C|A v B) = 0 + 0.48 x (1 - 0) = 0.48
n CF(R2’) = 0.7 x 0.9 = 0.63
n CF(E|D) = 0 + 0.63 x (1 - 0) = 0.63
n CF (C & E) = min (0.48, 0.63) = 0.48
n CF(R3’) = 0.9 x 0.48 = 0.432
n CF(F|C & E) = 0.2 + 0.432 x (1 - 0.2) = 0.5456
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PROSPECTOR

n We have already seen

n Now, defining the Likelihood of Sufficiency by

  we can write
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PROSPECTOR

n Similarly, if we define the Likelihood of
Necessity by

we can write
n This enables us to develop rules of the

form:
IF e THEN h (LS, LN)

with both factors provided by an expert
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PROSPECTOR

n Mathematically, we have the constraints

but real-world problems may contradict
this

n More generally, if we are uncertain of e
itself, and it depends on observed
evidence e', we can make adjustments

LS 1 LN 1

LS 1 LN 1

LS 1 LN 1

> ⇒ <
< ⇒ >
= ⇒ =
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PROSPECTOR

n The probability of h given our belief e' is

from which the following derive

which in turn define a linear relationship
between        and

( ) ( ) ( ) ( ) ( )P ' P P ' P P 'h e h e e e h e e e= ⋅ + ¬ ⋅ ¬

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

P ' P P ' P

true P ' 1 and P ' P

false P ' 1 and P ' P

e e e h e h

e e e h e h e

e e e h e h e
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⇒ = =

⇒ ¬ = = ¬
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PROSPECTOR

n Real-world situations may result in
experts providing values that contradict
these assumptions, and some
adjustment therefore needs to be made

n Duda et al. proposed an ad hoc
assumption to relate        and
following a piecewise linear function

n This lead to PROSPECTOR

( ) ( )P ' P 'h e e e
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PROSPECTOR
n PROSPECTOR use two simple

functions to avoid inconsistencies:

n PROSPECTOR is an expert system
that assists geologists in mineral
deposit exploration
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PROSPECTOR

n A PROSPECTOR network is a set of nodes
representing evidence or hypotheses and
links connecting the nodes together with
uncertain relationships represented by LS or
LN values and prior probabilities for the
nodes

n Probabilities are propagated upward to the
topmost node
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PROSPECTOR
n Where multiple nodes affect a single

hypothesis, conditional independence is
assumed, and rules combine conjunctively or
disjunctively
k Conjunctive rules

u each ei is based on the partial evidence ei'

u PROSPECTOR assumes
u the resulting value is combined using the linear

function given above
k Disjunctive rules

u as above, but using max instead of min

( ) ( ){ }P ' min P 'ie e e e=



50

PROSPECTOR

n Updating odds
k Each time new evidence is provided, the

odds are updated, assuming conditional
independence
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PROSPECTOR

n Beliefs were elicited from users of
PROSPECTOR using certainty
measures, which were subsequently
converted to conditional probabilities
using the same piecewise linear
approach outlined earlier
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PROSPECTOR

n Using probabilities directly is a powerful
but challenging technique
k Probabilities must be known
k Probabilities must be updated
k Total probability must equal unity
k Conditional independence is required
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PROSPECTOR
n PROSPECTOR incorporates many simplifying

assumptions, but it is still a demanding system
n A large number of probabilities are still typically

required to be provided
k difficult to obtain
k computationally expensive

n Need to restart when new hypotheses are added:
there is no incremental updating

n Such a system is called intensional or global - by
contrast, MYCIN is extensional and has a modular
structure
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PROSPECTOR
n Other concerns about the updating methods

k Rednault et al. (1981)
u If A and B are intersections of the evidence

e1 . . . em, then they are independent
k Hussain (1972) sought to show

u for exhaustive and mutually exclusive hypotheses
h1 . . . hn and e1 . . . em conditionally independent, no
updating is possible

k Gymour (1985)
u gave a counter-example to disprove this

k Johnson (1986)
u showed that multiple updating of any hypothesis is

impossible, i.e., there is at most one piece of evidence
for which posteriors not the same as the prior


