26:198:722 Expert Systems

- Representing Uncertainty
- Certainty factors MYCIN
- PROSPECTOR

Sources of Uncertainty

- Unreliable sources of data and information
- Abundance of irrelevant data
- * Imprecision of language and perception
- Lack of understanding
- Faulty equipment
- Conflicting sources of data
- * Hidden or unknown variables
- Unknown or poorly specified rules or procedures
- Data difficult or expensive to obtain

Inexact methods

- Exact methods are not known
- Exact methods are impracticable

Epistemological adequacy

- Interaction of probabilities with quantifiers
- * Probabilities require information that is not available

Also

- Imprecise or vague terms not handled
- * Too many numbers
- * Expensive, intractable

Conditional probability

$$P(d|s) = \frac{P(d \& s)}{P(s)}$$

Bayes' Rule

$$P(d|s) = \frac{P(s|d) \cdot P(d)}{P(s)}$$

- Criticisms of relevance and applicability of objective probabilities (based on long-run frequencies)
- Consideration of subjective probabilities
 - * Bayesian updating important here
 - Subjective probabilities must exhibit
 - Coherence
 - Total Evidence
 - Conditionalization
 - * In practice bounded rationality makes this difficult

■ The more general form of Bayes' rule

$$P(d|s_1 \& ... \& s_k) = \frac{P(s_1 \& ... \& s_k | d) \cdot P(d)}{P(s_1 \& ... \& s_k)}$$

requires computation of $(mn)^k + m + n^k$ probabilities (for m diseases and n symptoms)

Tractability requires independence assumptions

- Probability theory thus leaves us with a trade-off
 - * assume data are independent
 - fewer numbers
 - simpler calculations
 - sacrifice accuracy
 - * track dependencies
 - pay computational price

- Kahneman & Tversky etc.
 - * Humans are poor Bayesian reasoners
 - Discount prior odds
 - * Recency effects
 - Over-confident in judgments
 - Poor understanding of sampling theory
- N.B. Constructive probabilities

- Vagueness and possibility
 - Fuzzy set theory
 - crisp sets
 - fuzzy sets
 - degrees of membership
 - relates to many-valued logic

- Vagueness and possibility
 - * Fuzzy logic
 - min for conjunction
 - max for disjunction
 - commutative
 - associative
 - mutually distributive
 - compositional
 - Possibility theory
 - precise questions imprecise knowledge

- Designed originally for use in MYCIN
- CF: {propositions} --> [-1, +1]

```
⋄ CF(X) = 1 X is certainly true
```

* CF(X) = -1 X is certainly false

* CF(X) = 0 X is entirely unknown

Generally:
CF(action)= CF(rule) x CF (Premise)

- As applied in MYCIN
 - * IF patient has symptoms $s_1 \& \ldots \& s_k$ and background conditions $t_1 \& \ldots \& t_m$ THEN conclude patient has disease d_i with certainty τ
- Background knowledge constrains application of the rules
- Buchanan & Shortcliffe argue that rigorous application of Bayes' rule would not be more accurate because conditional probabilities are subjective
- They intend CFs and their associated manipulations as approximations of probabilistic reasoning

- Computation of certainty factors is modular (Pearl)
 - * i.e., we don't need to consider information not contained in the rule
 - * conditional probabilities are not modular in this sense
 - * thus, when A is true, we cannot conclude $P(B) = \tau$ from $P(B|A) = \tau$ unless A is all that we know
 - * otherwise, if we acquire additional knowledge E, we may need to consider P(B|A,E)

In order to combine support provided by two different rules, Shortcliffe & Buchanan looked for a method that was

* commutative

- independent of order of firing
- * asymptotic
 - certainty arises only from an absolute proof
- Note also the argument in S & B (1975) that imperfect evidence in favor of a hypothesis is not to be construed as evidence against it

- This is expressed rather more formally: $C[h,e] \neq 1-C[\neg h,e]$ confirmation is not 1 disconfirmation
- This is an idea we will re-visit e.g. when we consider Dempster-Shafer Belief Functions and their potential application in auditing

- Measure of Belief
 - * the measure of increased belief in the hypothesis h, based on the evidence e, is x MB[h,e]=x
- Measure of Disbelief
 - * the measure of increased disbelief in the hypothesis h, based on the evidence e, is y MD[h,e] = y

Formal definitions in terms of probability

$$MB[h,e] = \begin{cases} 1 & \text{if } P(h) = 1\\ \frac{\max[P(h), P(h|e)] - P(h)}{\max[1,0] - P(h)} & \text{otherwise} \end{cases}$$

$$MD[h,e] = \begin{cases} 1 & \text{if } P(h) = 0\\ \frac{\min[P(h), P(h|e)] - P(h)}{\min[1,0] - P(h)} & \text{otherwise} \end{cases}$$

$$CF[h,e] = MB[h,e] - MD[h,e]$$

Characteristics

```
0 \le MB[h,e] \le 1, \quad 0 \le MD[h,e] \le 1, \quad -1 \le CF[h,e] \le 1

If P[h|e] = 1

MB[h,e] = 1, \quad MD[h,e] = 0, \quad CF[h,e] = 1

If P[\neg h|e] = 1

MB[h,e] = 0, \quad MD[h,e] = 1, \quad CF[h,e] = -1

MB[h,e] = 0 \quad \text{if } h \text{ is not confirmed by } e

MD[h,e] = 0 \quad \text{if } h \text{ is not disconfirmed by } e

CF[h,e] = 0 \quad \text{if } h \text{ is not disconfirmed by } e

CF[h,e] = 0 \quad \text{if } h \text{ is not disconfirmed nor disconfirmed by } e
```

- CF as defined here has the desired property
 - * confirmation is not 1 disconfirmation
- In fact
 - * confirmation + disconfirmation = 0
- CF judgments must be elicited carefully from experts to ensure that they respect the constraints implied by these formal definitions

Defining criteria

Limits

$$MB[h,e+] \rightarrow 1$$
, $MD[h,e-] \rightarrow 1$,
 $CF[h,e-] \leq CF[h,e-\&e+] \leq CF[h,e+]$

* Absolutes

$$MB[h,e+]=1 \Rightarrow MD[h,e-]=0$$
 $MD[h,e-]=1 \Rightarrow MB[h,e+]=0$
 $MB[h,e-]=MD[h,e-]$ is undefined

Defining criteria

* Commutativity

$$MB[h, s_1 \& s_2] = MB[h, s_2 \& s_1]$$

$$MD[h, s_1 \& s_2] = MD[h, s_2 \& s_1]$$

$$CF[h, s_1 \& s_2] = CF[h, s_2 \& s_1]$$

* Missing information

MB[
$$h, s_1 & s_2$$
] = MB[h, s_1]
MD[$h, s_1 & s_2$] = MD[h, s_1]
CF[$h, s_1 & s_2$] = CF[h, s_1]

Combining functions

* Incrementally acquired evidence

$$MB[h, s_1 \& s_2] = \begin{cases} 0 & \text{if } MD[h, s_1 \& s_2] = 1 \\ MB[h, s_1] + MB[h, s_2] \cdot (1 - MB[h, s_1]) & \text{otherwise} \end{cases}$$

$$MD[h, s_1 \& s_2] = \begin{cases} 0 & \text{if } MB[h, s_1 \& s_2] = 1\\ MD[h, s_1] + MD[h, s_2] \cdot (1 - MD[h, s_1]) & \text{otherwise} \end{cases}$$

Combining functions

Conjunctions of hypotheses

$$MB[h_1 \& h_2, e] = min(MB[h_1, e], MB[h_2, e])$$

$$MD[h_1 \& h_2, e] = max(MD[h_1, e], MD[h_2, e])$$

Disjunctions of hypotheses

$$MB[h_1 \lor h_2, e] = max (MB[h_1, e], MB[h_2, e])$$

 $MD[h_1 \lor h_2, e] = min (MD[h_1, e], MD[h_2, e])$

Strength of evidence

* Suppose evidence s_I is not known with certainty, but a CF based on prior evidence e is known. If MB' and MD' are the degrees of belief and disbelief when s_I is known with certainty, then the actual degrees of belief and disbelief are given by

$$MB[h, s_1] = MB'[h, s_1] \cdot max(0, CF[h, s_1])$$

 $MD[h, s_1] = MD'[h, s_1] \cdot max(0, CF[h, s_1])$

- Note that in S & B (1975) MYCIN computes and maintains MBs and MDs separately, only computing CFs at the end, although CFs are then used to generate recommendations
- This differs from "simplifed" explanation e.g. in Durkin Chapter 12

- In accordance with the limiting properties, multiple items of confirming evidence will result in MB --> 1 (say, 0.99)
- Suppose, however, we have a single item of disconfirming evidence with MD = 0.8
- Then CF = MB MD = 0.19, i.e., many sources of confirmation have been almost completely offset by a single disconfirming item

To de-sensitize this effect, the definition of CF was subsequently modified to

$$CF[h,e] = \frac{MB[h,e] - MD[h,e]}{1 - \min[MB[h,e],MD[h,e]]}$$

Using this definition, the CF for our example becomes $\frac{0.99-0.8}{1-\min[0.99,0.8]} = \frac{.19}{.20} = 0.95$

If we are only interested in updating CFs without retaining MBs and MDs, we can perform incremental updating using

$$CF_{COMBINE} = \begin{cases} CF_1 + CF_2 \cdot (1 - CF_1) & \text{if both} > 0 \\ CF_1 + CF_2 \cdot (1 + CF_1) & \text{if both} < 0 \\ \frac{CF_1 + CF_2}{1 - \min\left(\left|CF_1\right|, \left|CF_2\right|\right)} & \text{otherwise} \end{cases}$$

- CFs may be used
 - * to direct a best-first search
 - * to control search explicitly
 - * to prune the search
 - e.g., to drop goals with when their CFs fall within the range [-0.2, +0.2]
 - * to rank order hypotheses

Durkin recommends

- * Obtain CFs from expert's use of qualified terms
- * Don't elicit CFs directly
- Avoid deep inference chains (because approximate departs increasingly from probabilistic values)
- Avoid many rules with the same hypothesis
- * Avoid rules with many premises split into multiple rules

- Adam (1976) criticized certainty factors
 - * CF associated with a hypothesis by MYCIN does not correspond to a simple probability model based on Bayes' rule
 - did S & B (1975) claim that it did?
 - * Degrees of belief from different evidence cannot always be chosen independently
 - e.g., absolute diagnostic indicators
 - * min and max are not always appropriate for conjunctions
 - e.g., mutually exclusive alternatives

* CF ranking may reverse probability ranking

• Suppose
$$P(h_1) = 0.8$$
 $P(h_2) = 0.2$ $P(h_1|e) = 0.9$ $P(h_2|e) = 0.8$

• Note
$$P(h_1|e) = 0.9 > P(h_2|e) = 0.8$$

• But
$$CF(h_1, e) = \frac{P(h_1|e) - P(h_1)}{1 - P(h_1)} = \frac{0.9 - 0.8}{0.2} = 0.5$$

$$CF(h_2, e) = \frac{P(h_2|e) - P(h_2)}{1 - P(h_2)} = \frac{0.8 - 0.2}{0.8} = 0.75$$

• Hence $CF(h_1, e) < CF(h_2, e)$

- * Transitivity across chains of reasoning is not generally valid
- * CFs are defined from MBs and MDs in terms of *increases* or *decreases* in belief, but elicited for MYCIN as *absolute values*

■ Heckerman (1986)

- * Provides an example to show that the S & B (1975) definition of CFs, in conjunction with the rules for combining (incremental updating), lead to non-commutativity
- * His conclusion from this is that we should take desirable properties of CFs as axiomatic, retain the combination rules, and seek an alternative formulation of CFs in probabilistic terms

- Heckerman (1986)
 - * Axiomatizes the "desiderata" for certainty factors using a somewhat modified (simplified) notation, but formally conditioning on prior evidence,
 - * Exhibits an example of non-commutativity
 - States a formal requirement for a probabilistic interpretation of CFs
 - Gives the odds-likelihood form of Bayes' Theorem

$$O(h|e,e_p) = \frac{P(e|h,e_p)}{P(e|\neg h,e_p)} gO(h|e_p) = \lambda(h,e,e_p) gO(h|e_p)$$

■ Heckerman (1986)

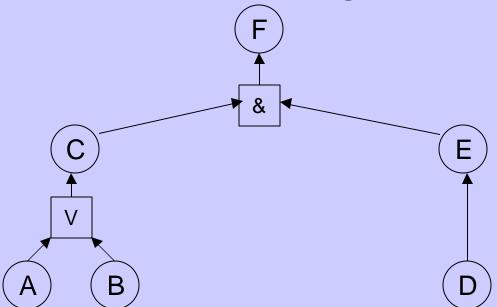
- * Defines conditional independence of e and e_p given H and $\neg H$
- * Shows that λ is a candidate for a probabilistic interpretation of CFs except that it ranges from 0 to ∞
- * Shows that any monotonic increasing transformation of the likelihood ratio satisfying $F\left(\frac{1}{x}\right) = -F(x)$ and $F(\infty) = 1$ is a probabilistic interpretation for CFs (and conversely)

■ Heckerman (1986)

- * Gives specific examples of such transformations
- * Observes that evidence combined using the S & B combination functions is required to be conditionally independent given both the hypothesis and its negation
- * Argues by example that the latter condition often fails in practice
- Introduces axioms for sequential combination (corresponding to strength of evidence in S & B)

- Heckerman (1986)
 - Shows that these new axioms do not further constrain probabilistic interpretations of CFs
 - * Demonstrates that although CFs have been applied to non-tree inference networks, updating is valid only in tree structures (rarely applicable in complex practical situations)

Rules may conveniently be organized as an inference net, e.g.,



Rules:

* R1: A v B --> C

CF = 0.8

* R2: D --> E

CF = 0.7

* R3: C & E --> F

CF = 0.9

Facts

* A

CF = 0.4

∗ B

CF = 0.6

* D

CF = 0.9

CF = 0

* F

CF = 0.2

- \blacksquare CF(A v B) = max(0.4, 0.6) = 0.6
- \blacksquare CF(R1') = 0.8 x 0.6 = 0.48
- \blacksquare CF(C|A v B) = 0 + 0.48 x (1 0) = 0.48
- \blacksquare CF(R2') = 0.7 x 0.9 = 0.63
- \blacksquare CF(E|D) = 0 + 0.63 x (1 0) = 0.63
- \blacksquare CF (C & E) = min (0.48, 0.63) = 0.48
- $\mathsf{CF}(\mathsf{R3'}) = 0.9 \times 0.48 = 0.432$
- \blacksquare CF(F|C & E) = 0.2 + 0.432 x (1 0.2) = 0.5456

We have already seen

$$O(h|e) = \frac{P(e|h)}{P(e|\neg h)} gO(h) = \lambda(h,e) gO(h)$$

Now, defining the Likelihood of Sufficiency by

$$LS = \frac{P(e|h)}{P(e|\neg h)}$$
 we can write $O(h|e) = LS \cdot O(h)$

Similarly, if we define the Likelihood of Necessity by $LN = \frac{P(\neg e|h)}{P(\neg e|\neg h)}$

we can write $O(h|\neg e) = LN \cdot O(h)$

This enables us to develop rules of the form:

IF *e* THEN *h* (LS, LN) with both factors provided by an expert

Mathematically, we have the constraints

$$LS > 1 \Rightarrow LN < 1$$

 $LS < 1 \Rightarrow LN > 1$
 $LS = 1 \Rightarrow LN = 1$

but real-world problems may contradict this

■ More generally, if we are uncertain of *e* itself, and it depends on observed evidence *e'*, we can make adjustments

■ The probability of h given our belief e' is

$$P(h|e') = P(h|e) \cdot P(e|e') + P(h|\neg e) \cdot P(\neg e|e')$$

from which the following derive

$$P(e|e') = P(e) \Rightarrow P(h|e') = P(h)$$

 $e \text{ true} \Rightarrow P(e|e') = 1 \text{ and } P(h|e') = P(h|e)$
 $e \text{ false} \Rightarrow P(\neg e|e') = 1 \text{ and } P(h|e') = P(h|\neg e)$

which in turn define a linear relationship between P(h|e') and P(e|e')

- Real-world situations may result in experts providing values that contradict these assumptions, and some adjustment therefore needs to be made
- Duda et al. proposed an ad hoc assumption to relate P(h|e') and P(e|e') following a piecewise linear function
- This lead to PROSPECTOR

PROSPECTOR use two simple functions to avoid inconsistencies:

$$P(h|e') = P(h|\neg e) + \frac{P(e|e')}{P(e)} \cdot (P(h) - P(h|\neg e)) \quad \text{for } 0 \le P(e|e') \le P(e)$$

$$P(h|e') = \frac{P(h) - P(h|e) \cdot P(e)}{1 - P(e)} + P(e|e') \cdot \frac{P(h|e) - P(h)}{1 - P(e)} \quad \text{for } P(e) \le P(e|e') \le 1$$

 PROSPECTOR is an expert system that assists geologists in mineral deposit exploration

- A PROSPECTOR network is a set of nodes representing evidence or hypotheses and links connecting the nodes together with uncertain relationships represented by LS or LN values and prior probabilities for the nodes
- Probabilities are propagated upward to the topmost node

Where multiple nodes affect a single hypothesis, conditional independence is assumed, and rules combine conjunctively or disjunctively

* Conjunctive rules

- ullet each e_i is based on the partial evidence e_i
- PROSPECTOR assumes $P(e|e') = \min \{P(e_i|e')\}$
- the resulting value is combined using the linear function given above

* Disjunctive rules

as above, but using max instead of min

Updating odds

* Each time new evidence is provided, the odds are updated, assuming conditional independence

$$O(h|e_1',e_2',...,e_n') = \prod_{i=1}^{i=n} LS_i' \cdot O(h) \text{ where } LS_i' = \frac{P(e_i|h)}{P(e_i|\neg h)}$$

$$O(h|\neg e_1', \neg e_2', \dots, \neg e_n') = \prod_{i=1}^{i=n} LN_i' \cdot O(h) \text{ where } LN_i' = \frac{P(\neg e_i|h)}{P(\neg e_i|\neg h)}$$

■ Beliefs were elicited from users of PROSPECTOR using certainty measures, which were subsequently converted to conditional probabilities using the same piecewise linear approach outlined earlier

- Using probabilities directly is a powerful but challenging technique
 - * Probabilities must be known
 - Probabilities must be updated
 - * Total probability must equal unity
 - Conditional independence is required

- PROSPECTOR incorporates many simplifying assumptions, but it is still a demanding system
- A large number of probabilities are still typically required to be provided
 - * difficult to obtain
 - * computationally expensive
- Need to restart when new hypotheses are added: there is no incremental updating
- Such a system is called intensional or global by contrast, MYCIN is extensional and has a modular structure

- Other concerns about the updating methods
 - * Rednault et al. (1981)
 - If A and B are intersections of the evidence $e_1 \dots e_m$, then they are independent
 - * Hussain (1972) sought to show
 - for exhaustive and mutually exclusive hypotheses $h_1 \ldots h_n$ and $e_1 \ldots e_m$ conditionally independent, no updating is possible
 - * Gymour (1985)
 - gave a counter-example to disprove this
 - * Johnson (1986)
 - showed that multiple updating of any hypothesis is impossible, i.e., there is at most one piece of evidence for which posteriors not the same as the prior