m Representing Uncertainty

m Certainty factors - MYCIN
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Representing Uncertainty

m Sources of Uncertainty

# Unreliable sources of data and information

# Abundance of irrelevant data

# Imprecision of language and perception

# Lack of understanding

# Faulty equipment

% Conflicting sources of data

# Hidden or unknown variables

% Unknown or poorly specified rules or procedures
% Data difficult or expensive to obtain
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Representing Uncertainty

B Inexact methods
3 Exact methods are not known
# Exact methods are impracticable

m Epistemological adequacy
% Interaction of probabilities with quantifiers
s Probabilities require information that is not available

m Also
# Imprecise or vague terms not handled
# Too0 many numbers
s EXpensive, intractable
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Representing Uncertainty

m Conditional probability
P(d\s) = P(s(i)s)

m Bayes’ Rule
P(d\s) (S‘szDP( )
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Representing Uncertainty

m Criticisms of relevance and applicability
of objective probabilities (based on
long-run frequencies)

m Consideration of subjective probabilities
3 Bayesian updating important here

3 Subjective probabillities must exhibit
¢ Coherence
¢ Total Evidence
+ Conditionalization

% In Eractice bounded rationalitx makes this difficult .



Representing Uncertainty

m The more general form of Bayes’ rule

P(s.&...& s |d)P(d)
P(s&...&s,)

requires computation of (mn)k +m+ n*
probabilities (for m diseases and n
symptoms)

m Tractability requires independence
assumptions

P(d\sl& ..& sk) =
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Representing Uncertainty

m Probabillity theory thus leaves us with a
trade-off
# assume data are independent
+ fewer numbers

¢ simpler calculations
+ sacrifice accuracy

3 track dependencies
¢ pay computational price
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Representing Uncertainty

m Kahneman & Tversky etc.
# Humans are poor Bayesian reasoners
# Discount prior odds
# Recency effects
3 Over-confident in judgments
s Poor understanding of sampling theory

m N.B. Constructive probabilities
38




Representing Uncertainty

m Vagueness and possibility

# Fuzzy set theory
# Crisp sets
¢ fuzzy sets
+ degrees of membership
¢ relates to many-valued logic

o
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Representing Uncertainty

m VVagueness and possibility
# Fuzzy logic
+ min for conjunction
+ max for disjunction
¢ commutative
# associative
+ mutually distributive
¢ compositional
% Possibility theory

& precise questions - imprecise knowledge
T 1 O



Certainty Factors

m Designed originally for use in MYCIN

m CF.
n
3% ( :
N (
N
e {
N

{propositions} --> [-1, +1]
~-(X) =1 Xs certainly true
~(X) =-1 X s certainly false

~(X) =0 Xis entirely unknown

m Generally:
CF(action)= CF(rule) x CF (Premise)
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Certainty Factors

m As applied iIn MYCIN

» |F patient has symptoms s, & ... & S,
and background conditions t, & L&t
THEN conclude patient has disease d.
with certainty t

B Background knowledge constrains application of the rules

B Buchanan & Shortcliffe argue that rigorous application of
Bayes’ rule would not be more accurate because
conditional probabilities are subjective

m They intend CFs and their associated manipulations as
approximations of probabilistic reasoning

I ——



m Computation of certainty factors is modular (Pearl)

% 1.e., we don't need to consider information not contained in
the rule

% conditional probabilities are not modular in this sense

# thus, when A is true, we cannot conclude P(B)=t
from P(B|A)=1 unless Ais all that we know

# otherwise, if we acquire additional knowledge E, we may
need to consider P(B|AE)



Certainty Factors

I In order to combine support provided by two
different rules, Shortcliffe & Buchanan looked
for a method that was

# commutative
+ independent of order of firing
s asymptotic
+ certainty arises only from an absolute proof

m Note also the argument in S & B (1975) that
Imperfect evidence in favor of a hypothesis is
not to be construed as evidence against it

I ——



Certainty Factors

m This Is expressed rather more formally:
C[h, e] z1- C[—I h, e]
confirmation is not 1 - disconfirmation

m This Is an idea we will re-visit e.g. when
we consider Dempster-Shafer Belief
Functions and their potential application
In auditing
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Certainty Factors

m Measure of Belief

s the measure of increased belief in the
hypothesis h, based on the evidence g, Is X

MB/h,e] = x
m Measure of Disbelief

s the measure of increased disbelief in the
hypothesis h, based on the evidence g, Is y

MD[h,e]=y

16
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Certainty Factors

m Formal definitions in terms of probability
a if P(h)=1

MB[h,e] = Elmax ED(h),P(h\e)E— P(h)

E 10| -P(n) otherwise
% if P(h)=0
MD[h.e] = CminfP(h) P(Re)E-P(h)

E min[1,0] - P(h)

CF[h,e] =MB[h,e] -MD[ h,€]

17
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Certainty Factors

m Characteristics
0<MB|h,e]<1, 0<MD[he]<l -1<CF[he|=<1

If P
MB

If P
MB

MB

he

—+h

he

HhleE=1

=1, MDJ[h,e]=0, CF[he]=1
eg=1
=0, MD[h,e]:l CF[h,e]:—l

TS

=0 Iif his not confirmed by e

MD[h,é =0 if his not disconfirmed by e

CF[h,e]': 0 if his neither confirmed nor disconfirmed by e
T 1 g
-



Certainty Factors

m CF as defined here has the desired
property
# confirmation 1s not 1 - disconfirmation

m In fact
# confirmation + disconfirmation = 0

m CF judgments must be elicited carefully
from experts to ensure that they respect

the constraints implied by these formal
definitions "




Certainty Factors

m Defining criteria

# Limits
MB[he+] -1 MD[he-] -1
CF[h,e-] <CF[h,e-&e+] < CF[h,e+]

% Absolutes
MB[h,e+] =10 MD[h,e-]=0
MD[h,e-]=10 MB[h,e+]=0
MB[h,e~] =MD[h,e-]isundefined
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Certainty Factors

m Defining criteria
3 Commutativity
MB[h,s & s,] =MBJh,s, & 5]
MD[h,s &s|=MD[h,s, &s]
CFh,s &s,]=CF|[h,s, &s]

# Missing information
MB[h,s & s,| =MB[h,s]
MD[h,s & s,| =MDJh,s]

CF[h,s & s,|=CF[h,s]
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Certainty Factors

m Combining functions

# Incrementally acquired evidence
if MD[h,s &s,]=1

MBI[h,s & Sz]zBWB[h,g]H\/IB[h,SZ]EQl—IVIB[h,%]) otherwise

= if MB[h,s &s)|=1
MD[h’Sl&SQ]Z%\/ID[h,Sl]+MD[h,sZ] {1-MD[h,s]) otherwise
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Certainty Factors

m Combining functions

3 Conjunctions of hypotheses
MB[h & h,,e] =min(MB[h,€],MB[h,.€])
MD[h & h,,€] = max(MD[h,€e],MD[h,,e€])

3 Disjunctions of hypotheses

MB[h Oh,,e] =max(MB[h,e],MB[h,.€])
MD[h Oh,,€] =min(MD[h,e],MD[h,,€])
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m Strength of evidence

# Suppose evidence s, Is hot known with certainty,
but a CF based on prior evidence e is known. If
MB' and MD'are the degrees of belief and
disbelief when s, Is known with certainty, then the
actual degrees of belief and disbelief are given by

MB[h,s]=MB'[h,s]inax (0,CF[h,s])
MD[h,s]=MD'[h,s]nax (0,CF[h,s])



Certainty Factors

m Note thatin S & B (1975) MYCIN
computes and maintains MBs and MDs
separately, only computing CFs at the
end, although CFs are then used to
generate recommendations

m This differs from “simplifed” explanation
e.g. In Durkin Chapter 12
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Certainty Factors

m In accordance with the limiting properties,
multiple items of confirming evidence will
result in MB --> 1 (say, 0.99)

B Suppose, however, we have a single item of
disconfirming evidence with MD = 0.8

m Then CF=MB - MD =0.19, I.e., many
sources of confirmation have been almost
completely offset by a single disconfirming
item
—26



Certainty Factors

B To de-sensitize this effect, the definition
of CF was subsequently modified to
MB[h,e]-MD[h,€]

CFMel =i mB[h o] MO o]

m Using this definition, the CF for our

example becomes _ 9¥-98 _.19_ 4
1-min[0.99,0.8] .20
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Certainty Factors

m If we are only interested in updating
CFs without retaining MBs and MDs, we
can perform incremental updating using

F+CE1+CF) if both<O
CE+CF,

0
§ﬁ+ CR[{1-CF) if both>0
CFCOMBINE — )
]
D -
H1-min(/CF[CF)

otherwise
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m CFs may be used
2% to direct a best-first search

3 to control search explicitly

s to prune the search

¢ e.g., to drop goals with when their CFs fall
within the range [-0.2, +0.2]

s to rank order hypotheses



Certainty Factors

m Durkin recommends
# Obtain CFs from expert’'s use of qualified terms
# Don’t elicit CFs directly

s Avoid deep inference chains (because
approximate departs increasingly from
probabilistic values)

# Avoid many rules with the same hypothesis

# Avoid rules with many premises - split into multiple
rules
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Certainty Factors

m Adam (1976) criticized certainty factors

s CF associated with a hypothesis by MYCIN does
not correspond to a simple probability model
based on Bayes’ rule

¢ did S & B (1975) claim that it did?

s Degrees of belief from different evidence cannot
always be chosen independently

+ e.g., absolute diagnostic indicators

# mMin and max are not always appropriate for
conjunctions
+ e.g., mutually exclusive alternatives
I 21
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Certainty Factors

# CF ranking may reverse probability ranking
¢ Suppose P(h)=08 P(h)=0

(h,
P(h|e)=0.9 P(hz\e)

e Note  P(hle)=09>P(hle)=0.8
+ But CF(h,e) = (hl‘e) (::)(hl) = 0-%?-8 =05
CF(h,,€) = (hlz_e?:(hz)( ) o.%fg.z =0.75

¢ Hence CF(h,e) <CF(h,,e)
T 2D
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Certainty Factors

# Transitivity across chains of reasoning Is
not generally valid

#% CFs are defined from MBs and MDs In
terms of increases or decreases in belief,
but elicited for MYCIN as absolute values



Certainty Factors

m Heckerman (1986)

# Provides an example to show that the
S & B (1975) definition of CFs, in conjunction with
the rules for combining (incremental updating),
lead to non-commutativity

# His conclusion from this is that we should take
desirable properties of CFs as axiomatic, retain
the combination rules, and seek an alternative
formulation of CFs in probabilistic terms
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Certainty Factors

m Heckerman (1986)

# AXiomatizes the “desiderata” for certainty factors
using a somewhat modified (simplified) notation,
but formally conditioning on prior evidence,

# Exhibits an example of non-commutativity

% States a formal requirement for a probabilistic
Interpretation of CFs

% Gives the odds-likelihood form of Bayes’ Theorem

O(h‘e,ep) _ Pp((ee_lhr’]’e;p))go(hep) =A(hee, )gO(h‘ep)




Certainty Factors

m Heckerman (1986)

# Defines conditional independence of e and e,
given H and - H

% Shows that A Is a candidate for a probabilistic
Interpretationof CFs except that it ranges from
O to

# Shows that any monotonic increasing
transformation of the likelihood ratio satisfying
FK)=Fb) ad Fl=)=1
IS a probabillistic interpretation for CFs (and
conversely)

36
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Certainty Factors

m Heckerman (1986)

# Gives specific examples of such transformations

# Observes that evidence combined using the S & B
combination functions is required to be
conditionally independent given both the
hypothesis and its negation

% Argues by example that the latter condition often
fails in practice

# Introduces axioms for sequential combination

(corresponding to strength of evidence in S & B)
T 27
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Certainty Factors

m Heckerman (1986)

3 Shows that these new axioms do not
further constrain probabilistic
Interpretations of CFs

s Demonstrates that although CFs have
been applied to non-tree inference
networks, updating is valid only in tree
structures (rarely applicable in complex
practical situations)
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Certainty Factors

m Rules may conveniently be organized
as an inference net, e.qg.,

)

%
A B

39




B Rules:

# RI1. AvB-->C CF=0.8
2 R2:D->E CF=0.7
# R3:.C&E-->F CF=0.9
m Facts

# A CF=04
% B CF=0.6
« D CF=0.9
% CE CF=0

% F CF=0.2



Certainty Factors

m CF(AvB)=max(0.4,0.6) =0.6

m CF(R1)=0.8x0.6=0.48

m CF(CIAvB)=0+0.48x(1-0)=0.48

m CF(R2)=0.7x0.9=0.63

m CFEID)=0+0.63x(1-0)=0.63

B CF(C&E)=min (0.48, 0.63) = 0.48

B CF(R3)=0.9x0.48 =0.432
mCFF|IC&E)=0.2+0.432x (1-0.2) =0.5456
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PROSPECTOR

m We have already seen
P(efh)
p(e]-h)’

O(hle) = O(h) =A (h,e)y0(h)

m Now, defining the Likelihood of Sufficiency by

_ Pleh) i _
LS—W we can write O(hle) = LSD(h)



PROSPECTOR

m Similarly, if we define the Likelihood of

Necessity by Ln- PFE(:eeﬂhg)

we can Write o(h|-e)=LN(h)

m This enables us to develop rules of the
form:
IFe THEN h (LS, LN)
with both factors provided by an expert
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PROSPECTOR

m Mathematically, we have the constraints

LS>10 LN <1
LS<10 LN >1
LS=10 LN =1
but real-world problems may contradict
this

m More generally, If we are uncertain of e
itself, and it depends on observed
evidence €, we can make adjustments

44
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PROSPECTOR

m The probability of h given our belief €' is
P(hle’) =P(hle) P(ele’) + P(h|-e) P(ele)
from which the following derive
P(ele’)=P(e) O P(h|e’)=P(h)
etrued P(de’)=1and P(hle')=P(hle)
efdsed P(-ele’)=1and P(hje')=P(h|-e)

which In turn define a linear relationship
between r(he)and P(efe)
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PROSPECTOR

m Real-world situations may result in
experts providing values that contradict
these assumptions, and some
adjustment therefore needs to be made

m Duda et al. proposed an ad hoc
assumption to relate p(he)and P(ele)
following a piecewise linear function

m This lead to PROSPECTOR
46




PROSPECTOR

'm PROSPECTOR use two simple

functions to avolid Inconsistencies:
P

P(h|-e)+ Ig?ee)') {P(h)-P(h|~¢)) foro<P(ee)<P(e)
P(h) - P(hle) P(e)
1-P(e)

B PROSPECTOR is an expert system
that assists geologists in mineral
deposit exploration

P(hle’)

+P(ee) DP(h\e) —P(h) for P(e) < P(ele’) <1

P(le) = 1-P(e)

47
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PROSPECTOR

B A PROSPECTOR network is a set of nodes
representing evidence or hypotheses and
links connecting the nodes together with
uncertain relationships represented by LS or
LN values and prior probabillities for the
nodes

m Probabillities are propagated upward to the
topmost node
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m Where multiple nodes affect a single
hypothesis, conditional independence is
assumed, and rules combine conjunctively or
disjunctively
s Conjunctive rules

¢ each g is based on the partial evidence g
¢ PROSPECTOR assumes P(ele’) =min{P(g [e')}
+ the resulting value is combined using the linear
function given above
s Disjunctive rules

+ as above, but using max instead of min
T 10



PROSPECTOR

m Updating odds

s Each time new evidence is provided, the
odds are updated, assuming conditional
Independence

| | N i=n . . P(Q‘h)

O(hle'e,...e,") = |:1| LSTO(h) where LS'= (e |-h)
' | . _i:n | ere D P(_IQ‘h)
O(h~&' e, "vme) = [JLNTD(h) where LN'=or o
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PROSPECTOR

m Beliefs were elicited from users of
PROSPECTOR using certainty
measures, which were subsequently
converted to conditional probabllities
using the same piecewise linear
approach outlined earlier




PROSPECTOR

m Using probabillities directly is a powerful

but cha
2% Proba
3% Proba

lenging technique
pilities must be known

pilities must be updated

s Total probability must equal unity
3 Conditional independence Is required



PROSPECTOR

m PROSPECTOR incorporates many simplifying
assumptions, but it is still a demanding system

m A large number of probabilities are still typically
required to be provided
% difficult to obtain
# computationally expensive

m Need to restart when new hypotheses are added:
there is no incremental updating

B Such a system is called intensional or global - by
contrast, MYCIN is extensional and has a modular

structure
I 3



PROSPECTOR

‘m Other concerns about the updating methods
# Rednault et al. (1981)

¢ If A and B are intersections of the evidence
e . ..e, then they are independent

# Hussain (1972) sought to show
+ for exhaustive and mutually exclusive hypotheses
h,...h,and e ...e conditionally independent, no
updatlng IS pOSSIb|e
# Gymour (1985)
+ gave a counter-example to disprove this
# Johnson (1986)

+ showed that multiple updating of any hypothesis is
Impossible, i.e., there is at most one piece of evidence
for which posterlors not the same as the prior
I DA
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